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Abstract 
Parabolic Wave Equations are an area of extensive research in the description of wave propagation. 

The Split-Step Fourier (SSF) method solves the Parabolic Wave Equation spectrally and is a 

method of choice for long-range propagation through atmosphere. Split-Step Fourier methods, 

however, are unable to sparsely represent fields and require repeated forward and inverse Fourier 

Transforms. Furthermore, Radiation Boundary Conditions (RBCs) are cumbersome to implement 

due to the Periodic Boundary Conditions enforced by the spectral propagator. This thesis solves 

the one-way wave equation in 2D and 3D with Gabor Transforms, representing propagating fields 

as a sum of locally supported frame functions with spatial shifts and frequency modulations. Gabor 

Transforms easily exploit sparsity in the space-frequency representation of structured fields. By 

precomputing the propagation characteristics of each frame function, a Gabor transformed 

wavefront can be efficiently propagated from one spatial slice to the next. RBCs are trivially 

implemented by removing frame functions that propagate outside the computational domain (i.e. 

beyond certain height bounds) from consideration, a feat that is impossible using classical split-

step Fourier methods. Phase screens, formerly requiring immense computational resources to be 

applied in the spatial domain, are implemented in the Gabor domain. 

The choice of Gabor frame is critically important for sparsification; the optimum window 

width must be selected to match the field characteristics of a particular scenario. Conventional 

Gabor frames have uniform window size for all spatial and frequency shifts. However, real-world 

problems rarely have uniform field complexity. This thesis will demonstrate the use of the jigsaw 

puzzle Gabor frame to optimally sparsify propagating fields while maintaining accuracy. The 

jigsaw puzzle frame is characterized by Gabor window functions that have different widths at 

different locations in space, rather than uniform window widths over all space. This framework 

naturally and efficiently accommodates the multi-scale nature of realistic propagation scenarios. 

This thesis introduces hybrid solvers in 2D and 3D to describe propagation over terrain. In 

2D, this thesis outlines a hybrid SSF-FD solver that combines the efficiency of SSF and the 

modeling flexibility of FD-based schemes. The solver maintains the SSF approach of advancing 



xiii 

 

free-space propagating fields using spectral propagators, but invokes a localized FD scheme to 

account for field interactions with terrain. From an operational perspective, the hybrid solver slices 

up the computational domain just like standard SSF- and FD-based solvers. In 3D, a similar 

hybridization is performed between a sparse 3D Gabor propagator for fields moving through upper 

atmosphere, and a SSF solver augmented with Impedance Boundary Conditions for fields about 

the terrain. These hybridizations substantially reduce the computational complexity of propagation 

problems by only using expensive field descriptions for propagation near terrain, and using fast 

propagators for all other space.
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Introduction 
Motivation 

Parabolic Wave Equations (PWEs) have been extensively used to model long-range wave 

propagation [1]. There exist many PWE solvers with varying tradeoffs in accuracy, computational 

complexity, and ease of implementation. Among the available options, the Split-Step Fourier 

(SSF) method has become widely used due to its performance and its mathematical simplicity [2].  

SSF methods use a spectral propagator to march fields in the Fourier domain, and weak 

inhomogeneities in the environment can be described by a spatial-domain phase screen. SSF has 

been successfully used to model propagation through environments such as air above rough oceans 

[3], troposphere above irregular terrain [4], and air above buildings on flat terrain [5]. The SSF 

method has several major limitations: 1) Sharp transitions in environment, such as an interface 

between atmosphere and ground, canot be described by SSF, 2) The repeated Fourier Transforms 

to move between the spatial and spectral domain scale with ( log )O n n , where n  is the vertical 

domain size, and 3) the Fourier-domain propagator enforces periodic boundary conditions, which 

render it difficult to implement Radiation Boundary Conditions (RBCs) that absorb waves that 

leave the domain. Terrain can be described rigorously with Finite Difference (FD) or other rigorous 

solvers, but their scalability is worse than SSF and they are thus impractical for long-range 

propagation problems. Computational complexity limitations of SSF are unavoidable without 

major overhauls due to the use of Fourier Transforms. Boundary conditions are also a challenge 

with SSF; RBCs are typically implemented with Absorbing Boundary Conditions (ABCs) [6] 

which absorb incoming radiation, but for steep angles of incidence they must be thick layers which 

leads to excess resource usage.  

Review of previous work 

Several efforts have been made to improve the computational efficiency of the Split-Step Fourier 

method, particularly by using representing information with more coarse domains in order to cut 

down on the time taken to compute successive Fourier Transforms. For example, [7] introduced 

the use of the Padé approximation to the square root operator used in the time-domain 
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representation of the split-step Fourier method to increase the speed of computation, and it is 

compatible with less dense sampling along the domain of propagation [8]. For frequency-domain 

problems, however, the square root operator does not need to be approximated at all, so 

compromises in accuracy are unnecessary. Methods covered in [9] leverage numerical integration 

techniques for more accurate forward and inverse Fourier transforms, which can be paired with 

coarser domains. Less dense domains are effective provided problem constraints don’t dictate a 

minimum resolution. 

Several methods have been proposed for improving RBCs for split-step propagators. 

Perfectly-Matched Layers (PMLs) for Finite-Difference propagators were introduced by [10], and 

were further revised by [11]. [12] developed a closed-form expression for transparent boundary 

conditions for finite-difference schemes. An adaptation of PMLs for Fourier methods was 

proposed by [13] which models the layer as a complex region where fields decay, which can be as 

few as 10-50 points thick but loses efficiency for shallow-angle propagation. The ideas were 

further improved when a method for Absorbing Boundary Conditions that use imaginary rather 

than complex finite element lengths for decay was developed by [14], which can be adapted for 

both time and frequency-domain propagation schemes. While such developments substantially 

reduce the storage requirements of absorbing layers, they ultimately still rely on spending 

resources to represent regions of decaying fields. 

The Gabor-Daubechies transform is a method for time-frequency analysis of a signal. The 

Gabor transform decomposes a wavefront into an overcomplete set of smooth, locally supported 

frame functions, consisting of spatially shifted and frequency modulated windows [15]. Gabor 

Transforms, and more generally Wavelet Transforms, have received recent attention for parabolic 

wave equation solvers. Gabor Transforms were first used in [16] for PWE-based modeling of 

geophysical problems, where a function is decomposed into localized propagating beamlets. 

Subsequently, a method coined “Split-Step Wavelet”, developed in [17] and [18], used wavelet-

domain propagators very similar to Gabor propagators and was exploited for its ability to sparsely 

represent wavefronts. To account for atmospheric inhomogeneities, phase screens were typically 

implemented by computing an inverse wavelet transform and applying the operator in the spatial 

domain. More recently, [19] moved the phase screen into the wavelet domain by approximating 

the atmospheric refractivity as constant over each wavelet. 



3 

 

Wavelet methods benefit from multiscale discretizations, and some adaptive multiscale 

wavelet-based methods have been applied to other types of PDEs. In [20], solutions to several 

different PDEs are demonstrated, where a multiscale wavelet transform adaptively accommodates 

shocks and other sharp transitions; the method was upgraded to 2D in [21]. Adaptive wavelet 

methods were extended to the wave equation in [22] using general time-stepping ODE solver 

schemes. The sparsification advantages of domain-partitioning with multiscale analysis have also 

been exploited in PDE literature, particularly for hyperbolic equations in  [23] and [24]. In a similar 

vein, the Schrodinger equation has been sparsely solved with an adaptive wavelet model for finite 

difference methods [25]. Adaptive methods have yet to be extensively applied to one-way wave 

equations for propagation problems. 

Multi-window Gabor transforms can utilize different window widths over different spatial 

regions. Multi-window Gabor transforms have been employed to represent features of mixed 

resolutions for signal analysis [26], but they have not yet been used for propagation. While some 

wavelet-based propagation methods [27] use multiresolution frames, the adaptability of such 

methods remain limited; the wavelet frames are still fixed and have to be defined by a user in 

advance of computing propagated fields, and there is no partitioning of space into regions of higher 

or lower complexity. A fixed user-selected frame, even if multi-window, may not be optimal when 

the user is unable to predict what types of field patterns will emerge in the propagation scenario. 

The problem of long-range propagation over terrain has been extensively studied, and there 

are a variety of solution methods. Semi-empirical models such as Longley-Rice [28] or asymptotic 

methods such as ray-tracing [29][30][31] or GTD [32] may be employed, but they sacrifice 

accuracy for simplicity of computation. Numerically rigorous schemes like Finite Element [33], 

Integral Equations and Finite Difference Time Domain [34][35] can also be used when 

computational resources permit, but they are impractical for large-scale problems. 

There also exist many methods for implementing terrain scattering into SSF. While simple 

PEC boundary conditions via imaging can be easily modeled with SSF, more complex terrain is 

difficult to implement due to phase screens only being accurate for weak inhomogeneities. Several 

methods have been proposed to remedy this issue. Hard truncation with knife-edges [36] can 

approximate diffractive features such as buildings. Staircasing is more robust, but tends to only be 

useful for modeling obstructive and diffractive terrain elements, and does not accurately describe 

scattering behavior. Impedance Boundary Conditions [37] may be used to more accurately 
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describe the ground medium. Many implementations of such boundary models invoke conformal 

coordinate transformations to better accommodate terrain height changes [4] [38] [39]. Many of 

these methods still have difficulty describing inhomogeneous ground features. For example, at low 

frequencies, tree cover can be described as a four-layered medium [40] [41]. If the terrain is flat, 

some of the existing methods could be adapted to the four-layer model, but implementation 

becomes extremely cumbersome if the terrain is not flat. 

Finite Difference methods rigorously solve the wave equation. The primary advantage of 

FD solvers is that they can accommodate complex geometry with ease, and they are compatible 

with a variety of boundary conditions including Perfectly-Matched Layers (PMLs) [42]. In the 

case of long-range propagation, Finite Difference solvers have been adapted to solve the PWE in 

the spatial domain. FD PWE solvers were first developed for ocean acoustics [43], and they have 

been successfully employed to model irregular terrain in electromagnetics problems [44]. 

Several solvers that hybridize PWEs with numerically rigorous solvers have already been 

proposed to efficiently simulate complex geometry. Hybrid Parabolic Equation / Finite Difference 

Time Domain solvers are outlined in [45] and [46] which use FDTD to add a scattering correction 

to the standard PWE methods. In the case of indoor propagation, there exist several other hybrid 

solvers invoking PWEs and full-wave solvers [47] [48], or FDTD and asymptotic models such as 

UTD [49]. The limitation of many existing hybrid methods is that they are restricted to low 

frequency bands, scattering from electrically small objects, or propagation within confined spaces. 

There is an extensive body of literature on solving PWEs in 3D [50] [51] [52], particularly 

with Split-Step Fourier (SSF) [5]. Studying PWEs in 3D, especially under hybridization with 

rigorous numerical solvers, enables a full description of environments such as hilly terrain 

[45][53], forest [54], confined spaces [48], or scenarios with buildings [5] and scatterers [55]. 

Many 3D schemes suffer from performance issues due to the requirements for large, 

expensive domain sizes. 3D SSF, due to its use of Fourier Transforms, scales with 
2( log )O n n , 

where n  is one side length of the domain. Some efforts have been made to improve the 

performance of 3D solvers, for example the 2DN  method [56], which solves a set of 2D PWEs 

along consecutive planes to fill out a 3D region. The 2DN  method has the drawback of limited 

accuracy in modeling interactions transverse to the direction of propagation. 

Domain truncation, like in the 2D case, remains an issue with propagation in SSF in 3D. 

SSF enforces periodic boundary conditions, and it is difficult to implement a model for radiation 
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boundary conditions that mitigates the tendency for waves to either reflect or wrap around at 

domain boundaries. Typically, an absorbing layer is used for SSF problems in 3D [57], however 

this leads to immense waste of memory and computational time in processing fields in absorbing 

regions. In some cases, a domain can be tuned such that negligible radiation approaches the 

boundaries in order to subvert domain truncation issues entirely. While in many scenarios it may 

be easy to avoid unwanted radiation propagating towards the top and bottom domain walls, there 

are more limited scenarios and excitations where there is minimal spreading towards the domain 

side walls. Recent literature such as [58] solves the one-way wave equation along an angular width 

and invokes periodic boundary conditions along the boundaries of the angular slice, under an 

assumption that radiation will not spread beyond the angular width. While such a method works 

well in many scenarios, the flexibility remains limited and solving the wave equation in cylindrical 

coordinates requires the computational domain to have decreasing cartesian resolution as the 

radius increases. Furthermore, the angular slice must be wide enough that no energy reaches the 

side walls of the domain, which consumes computational resources. 

Limitations in terrain modeling are exacerbated in three dimensions. 2D terrain models can 

be used in 3D problems via the 2DN  method [59], however the limitations of the method 

mentioned previously in this section persist. More rigorous solvers and scattering models are often 

impractical for describing detailed, large-scale 3D geometry, and are thus typically delegated to 

hybrid solvers; many such hybrid solvers, however, still largely rely on Parabolic Wave Equation 

schemes that store fields in full uncompressed form [5][45][46].  Finite-Difference-Based 

Parabolic Wave Equation solvers can model geometry accurately and without need for 

hybridization [53], and simpler terrain models based on IBCs [54], staircasing [60], or knife edges 

[61][62] can be used for faster simulation, but such solvers still do not compress propagating fields. 

Advancements Proposed by this Work 

Chapter 1 introduces a Gabor Frame-based propagator to sparsely solve the one-way wave 

equation. The Gabor propagator is based on the conventional Split-Step Fourier propagator, with 

the principal advantage that propagating field information can be sparsified for fast computation. 

The Gabor method is improved beyond the state-of-the-art Split-Step Wavelet models by 

introducing an exact implementation of phase screens in the Gabor domain, as well as by 

introducing a zero-memory model for Radiation Boundary Conditions. 
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Chapter 2 discusses a multiscale improvement to the Gabor method. An adaptive multi-

window Gabor frame is best suited to sparsely represent complex multiscale field profiles. In 

particular, this chapter uses the space-frequency jigsaw puzzle method, introduced by [63]. The 

jigsaw puzzle method is a multi-window Gabor expansion that splits the space-frequency plane 

into a set of different regions, and for each region, picks the window width that maximizes sparsity. 

This multi-window transform can be used to propagate fields in the same manner as in existing 

split-step wavelet methods. 

Chapter 3 proposes a hybrid Split-Step Fourier – Finite Difference solver for one-way wave 

equations over long ranges. This new solver will invoke SSF to spectrally propagate waves through 

the atmosphere, and a FD solver will be locally applied in a small domain about the surface of the 

terrain to model scattering and absorption. This method will maintain the efficiency of SSF for 

propagation through weakly inhomogeneous atmosphere, while utilizing the precision of FD 

solvers in minimally sized regions. 

Chapter 4 discusses a 3D generalization of the topics in chapter 1. Previous SSW methods 

were implemented in 3D in [64], however there still exist properties of Gabor Transforms that can 

be taken advantage of. Gabor Transforms, which are easily generalized to 2D [65], can be used to 

represent 3D propagating fields within the Split-Step Wavelet framework. The uniform space-

frequency grid of Gabor Transforms enables fast, uniform processing of all Gabor-domain data, 

which proves useful for Gabor-domain phase screens and RBCs in 3D. 

Chapter 5 augments the solver introduced in chapter 4 with a terrain model. In a similar 

manner to chapter 3, a hybrid Gabor-IBC method is used to efficiently march fields in upper 

atmosphere while rigorously describing fields near the terrain surface. The 3D sparse Gabor solver 

is used to propagate atmospheric fields, and a 3d Split-Step Fourier solver subjected to Impedance 

Boundary Conditions is used to compute scattered fields from terrain that is described by 

staircasing.
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Chapter 1. Gabor Frame-Based Sparsification, Radiation Boundary 

Conditions, and Phase Screens for One-Way Wave Equations 

1.1 Introduction 

This chapter will introduce the usage of Gabor Transforms to represent propagating fields. The 

Gabor Transform represents a wavefront as a summation of window functions that exhibit 

beamlike propagation. The propagation characteristics of each window function are precomputed 

and expressed in the Gabor domain; this enables the construction of a propagation operator that 

marches fields entirely in the Gabor domain. 

If a field has local support or simple structure, its Gabor-domain representation can be 

sparsified; Gabor window functions with magnitudes that fall below a threshold can be deleted. 

The propagator then only needs to interface with nonzero Gabor coefficients, thus reducing the 

computational cost of the marching step. Furthermore, the precomputed propagation operators 

themselves can be sparsified, aided by the simplistic beamlike propagation of Gabor window 

functions. The CPU time per step therefore is determined by the number of nonzero elements of 

the sparse propagation matrix multiplied by those of the sparse space-frequency representation of 

the fields. 

This chapter exploits several properties of Gabor-domain field propagation that have not 

yet been utilized in prior study. RBCs, rather than requiring thick absorbing layers, can be trivially 

implemented in the Gabor domain by deleting excited window functions that escape the domain. 

This method consumes zero memory and can be further improved via hybridization with a thin 

absorbing layer. Phase screens can also be described partially or fully in the Gabor domain. In the 

case of a linear refractive index profile, the phase screen can be built into the propagation 

characteristics of Gabor window functions, yielding an exact representation of fields marching 

through inhomogeneous atmosphere. If the refractive index profile is piecewise linear, the same 

technique can be adapted, with the caveat that local Inverse Gabor Transforms are used about the 

corners in the refractive index profile in order to apply the corners spatially. Localized transforms 

enable the processing of complex spatial-domain phenomena without requiring the storage of the 
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entire spatial domain, thus maintaining the sparsity advantage of the Gabor solver over 

conventional SSF solvers. 

1.2 Split-Step Fourier Migration 

The SSF method is a marching algorithm that can be used to solve the one-way wave equation. 

Consider a two-dimensional slice of atmosphere over either terrain or ocean, shown in Fig. 1.1. 

A transmitter is mounted above the surface on the left-hand side of the domain, and it supplies a 

field excitation. The direction to the right of the transmitter is denoted as the range direction, and 

the direction transverse to the ground is denoted as the vertical direction. The SSF method uses 

the excitation to propagate fields towards the right-side of the domain, accounting for refraction 

through the atmosphere and interaction with the surface. SSF solves a scenario by splitting the 

range direction into a sequence of vertical slices, and spectrally propagating fields from slice to 

slice using the one-way wave equation. 

 

Fig. 1.1. Visualization of the flow of information for a Split-Step Fourier solver. An initial field 

profile, formed by a transmitter, is defined along a vertical slice on the left-hand side given by 

[0, ]ψ z . Each step in the SSF method marches the field to the right by x . Interactions from the 

atmosphere or ground are modeled at each step. 

 

Consider an electromagnetic wave propagating through 2D space, with the horizontal (range) 

direction denoted by x  and the vertical direction denoted by z . Let the scalar quantity ( , )x z  

be the field component transverse to the x z  plane at a point ( , )x z . ( , )x z  represents the 

electric field strength for the TE propagation case, and the magnetic field strength for the TM 

propagation case. ( , )x z  satisfies the 2D Helmholtz equation, given by 
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, (0.1) 

where 0k  is the free space wavenumber, and ( , )n x z  is the refractive index of the medium at a 

point ( , )x z . An excitation )( ,tx z  is supplied by a transmitter mounted at some tx x , and 

fields are assumed to be right-propagating. In terms of the excitation,  for tx x , equation (0.1) 

has the exact Fourier Domain solution 

 ( , ) ( )ˆ ˆ( , ) ( , ) x tin x z k x

tz z

x
x k x k e  

 , (0.2) 

where ˆ ( , ) ( , ) zi z

t

k

z tx k x z e dz 





   is the Fourier Transform of the fields produced by the 

transmitter )( ,tx z , and 0 cosxk k   and 0 sinzk k   are the horizontal and vertical 

wavenumbers respectively, where   is the angle of propagation from horizontal. 

 The fields ( , )x z  will be discretized in order to numerically evaluate (0.2).  Let the 

vertical domain be discretized by the vector [0, ,..., ( ]1)zz N z  z  and the range direction be 

discretized by the vector [ , ,..., ( ]1)xt t tx x x x N x    x . Let [ , ]x zψ  be the field strength at 

some point in discrete ,x z , and let the vector 
1 2[ , ] [ [ , [ , [ , ]], ], , ]

zNx x z x z x zψ z ψ ψ ψ . [ , ]xψ z  

will be referred to as the field profile at x . Scalar operations on vectors such as exponentiation 

are applied pointwise, and products of vectors of the same dimension are pointwise unless 

otherwise notated. 

In the discrete domain, (0.2) becomes 

 ]( )[ ,[ ]ˆ ˆ[ , ] [ ], ti x x

t

x
x ex


 x zk k n z

z zψ k ψ k , (0.3) 

where ] FFT { ]}ˆ [ , [ ,zx xzψ k ψ z  is the Fast Fourier Transform (FFT) of [ , ]xψ z , zk  is the 

angular frequency vector corresponding to z , and 
2

2

0

[ 1]
k

  z
x z

k
k k . 

Equation (0.3) cannot be used to obtain [ , ]xψ z  directly, due to the mixing of spatial and 

spectral variables z  and zk . The SSF method approximates a solution by splitting (0.3) into a 

frequency-domain propagation step to march fields through free space, and a spatial-domain 
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phase-screen step to approximate the effects of the atmosphere. The refractive index profile is 

assumed to be weakly inhomogeneous over z  and invariant over x , and will be given by [ ]n z . 

The Split-Step Fourier algorithm to march a field slice at some 0x x  forwards to 0( )x x x  

is 

 0 ( [ ] 1)]

0 0

[ˆ[ , ] FF { [ ] },T
iki xx

eex x x
 

  x z n zk k

zψ z ψ k . (0.4) 

Equation (0.4) is called successively over each xx  to produce all fields [ , ]xψ z , starting from 

the initial slice [ , ]txψ z . The phase screen operator 0 ( [ ] 1)k xi
e

 n z
 introduces an error of )(O x , so 

the step size must remain small. 

To represent 3D field decay in the 2D scenario, a correction is made where fields decay 

cylindrically from the transmitter, given by 

  3D , ] / [ , ][ txx x xψ z ψ z , (0.5) 

with the condition 3D ] ][ , [ ,t tx xψ z ψ z  at the excitation. 

1.3 Gabor Transforms 

This section introduces the Gabor Transform, which expresses a function as a weighted sum of 

window functions, each with a spatial shift and a frequency modulation. 

Consider a vector [ ]g z  with length zN  and which is only nonzero on the first 
pN  elements. 

The ( , )n m th Gabor window function with window width 
pN  is defined by 

 ( )( )

, [ ]] [n m

i mb na zna z e    z
g z g z . (0.6) 

The Gabor window function is constructed by translating [ ]g z  by na z  and frequency modulating 

it by mb , where [0,1, , 1]Nn  n , [0,1, , 1]Mm  m , pM N , / / 2z pa N N N  , 

and /zb N M . Examples of window functions 
, [ ]n m zg  are shown in Fig. 1.2.  
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Fig. 1.2. Visualization of the real parts of Gabor window functions, with 128pN  : No modulation 

or shift (blue), spatially shifted with no frequency modulation (green), no spatial shift with 

frequency modulation (orange). Note that windows overlap in space and have local support of 

width 
pN . 

A vector can be decomposed into a weighted sum of Gabor window functions, given by 

 
,

, ,[ ][ ] n m

n

m

m

nψ z g z , (0.7) 

where each weight ,n m  is a Gabor coefficient. The Gabor coefficients can not be computed by 

simply inverting (0.7), because the Gabor window functions are not orthogonal. In order to obtain 

an expression for ,n m , a pseudo-inverse operation is required, which motivates the construction 

of a dual window function, which will now be discussed. 

Let a zN NM  matrix C  contain all of the Gabor window functions, and let a vector a  

contain a collection of associated weights, so that 

 
1,1 1,2 1, ,[ [ [] ] ] ][MN N

   C g z g z g z g z  (0.8) 

and 



12 

 

 
T

1,1 1,2 1, ,2,1N M Na a a a a   a , (0.9) 

where 
, , ][ ], [m n m na  ψ z g z , and  denotes a dot product. 

The vector a  is written as a matrix product 

 H [ ]a C ψ z , (0.10) 

where H  denotes the Hermitian. Equation (0.10) is solved for [ ]zψ  by computing the 

pseudoinverse of C , yielding 

 1 ]( [)H z CC Ca ψ . (0.11) 

The columns of the pseudoinverse of C  are defined as the dual window functions  ,
[ ]

n m
zg . It 

follows that the dual window functions have the expression 

 , ,

1[ ] [ ]( )H

n m n mz zg CC g . (0.12) 

The expression (0.11) can be written in terms of dual window functions as 

 ,

,

[ ] [] ] ][ [ ,n m mn

n m

ψ z g z ψ z g z . (0.13) 

Because (0.12) is invertible, the window and dual window functions in (0.13) can be interchanged 

to produce 

 
,

, ,
[ ] [ ][ ] [ ],n m n m

n m

z zz zψ g ψ g , (0.14) 

which is the representation of [ ]zψ  as a weighted sum of Gabor window functions. Either (0.13) 

or (0.14) may be used, depending on the application. 

The Gabor coefficient matrix [ , ]Φ n m  of size N M  is defined as the matrix of all Gabor 

coefficients of a function, where each of its elements , [ , ]n m n m Φ  is given by  

 , ,
][ ], [

n mn m  ψ z g z . (0.15) 

The operator to build a matrix [ , ]Φ n m  associated with [ ]ψ z  will be denoted as “GT”, standing 

for Gabor Transform, and is written as 



13 

 

 [ , ] GT{ [ ]}Φ n m ψ z . (0.16) 

Equation (0.7) will henceforth be referred to as the Inverse Gabor Transform and the operator is 

denoted by [ ] IGT{ [ , ]}ψ z Φ n m , and the Gabor domain refers to the set of all ,n m  associated 

with a vector [ ]ψ z . 

1.4 Propagation with Gabor Transforms 

This section will describe the propagation of fields with Gabor Transforms. Gabor-based 

propagation will be performed in the Gabor domain with a Gabor-domain operator, in an analogous 

manner to how Split-Step Fourier uses a frequency-domain operator to march fields in the Fourier 

domain. 

A. Gabor-Domain Migration 

Consider a scenario where a field profile at 0x  is specified by some dual window function 
, [ ]n mg z

. If this field is marched with Split-Step Fourier, its propagation will be beamlike given a suitable 

choice of dual window function, such as a Gaussian. Hence, a beamlet , ][ ,n m xb z  is defined as the 

solution to a propagation scenario for 0x x  where the initial profile is given by 

 
, ,[ , ] [ ]n m n mx b z g z . (0.17) 

Beamlets will be the basis for the construction of a Gabor-domain propagator. First, the vector 

, 0 , ][n m x xb z  is computed by marching the initial profile forward by x  with a SSF solver. The 

Gabor representation of the beamlet is subsequently computed, and the Gabor coefficient set of 

each marched beamlet is referred to as a propagation matrix. The propagation matrix is written as 

an element of a matrix of matrices P . P  is a 4-dimensional data structure of size 

)( ) (MN N M   , and is referred to as the propagation matrix set. The inner elements of P , one 

example of which is shown in Fig. 1.3, are given by 

 
, 0[ , , , ] GT{ , }[ ]s fs f xx P n m b z , (0.18) 

where the ( , )s f  element of the propagation matrix set is referred to as a N M  propagation 

matrix, representing the Gabor Transform of a beamlet with spatial shift index [0,1, , 1]s N   
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and frequency modulation index [0,1, , 1]f M  , marched forward through space by x . Each 

entry of an individual propagation matrix is denoted by 

 
, ,, [ , , , ] ],[ , ] [ ], [n m s f n mp s nf f m xs   P b z g z . (0.19) 

 

Fig. 1.3. Generation of one ( )N M  submatrix of the propagation matrix set. A beamlet (left) is 

marched forward by x  (middle), and its Gabor coefficient set is computed (right) and written 

into the propagation matrix. 

The beamlet , [ ],s f xb z  is conversely expressed in terms of the propagation matrix set as 

 
,

, , ,[ ] [ , ] [ ], n m

n m

s f n mx sp f b z g z . (0.20) 

The propagation matrix set is generated as a precomputation step. At runtime, the procedure for 

marching fields begins with the computation of the Gabor Transform of an initial field profile 

0[ ],xψ z  to produce coefficients 0, [ ]s f x . 0[ ],xψ z  is represented as an Inverse Gabor Transform 

 0, ,0

,

[ ] ], [ ] [s f s f

s f

xx ψ z g z . (0.21) 

Since the initial profile of a beamlet is equivalent to a Gabor dual window function, (0.17) can be 

substituted into (0.21) to yield 

 , ,0 0

,

0, [ ] [ , ][ ] s f s f

s f

x xx ψ z b z . (0.22) 

0[ ],xψ z  is then marched forward to 0[ , ]x xψ z  with Split-Step Fourier. The Fourier Transform 

operator in SSF can be distributed across the summation on the right-hand side of (0.22) so that 

the marched field can be described as a sum of beamlets, written as 
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 , ,0 0

,

[ , ] [] ,[ ]s f s f

s f

xx x x   ψ z b z . (0.23) 

By using (0.20), (0.23) can be expressed in terms of the propagation matrix set as 

 ,0 0 , ,

, ,

[ , ] ][ [ , ] [ ]n ms f n m

s f n m

x pxx s f
 

 


 


 ψ z g z . (0.24) 

This can be seen as rewriting the propagation step as the inverse Gabor transform of a set of Gabor-

domain matrix operations, given by 

 ,

,

0 0 }[{ ][ , ] [ , , , ]s f

s f

x x T xI sG f   ψ z P n m . (0.25) 

The profile 0[ , ]x xψ z  is equivalently described in the Gabor domain by 0 ][ , ,xx Φ n m , 

whose elements , 0 ][n m x x    are given by 

 , ,, 0 0

,

[ [ ] ,] [ ]n m s f

s f

n mx x p s fx   . (0.26) 

Equation (0.26) is an entirely Gabor-domain operator on the fields; the Gabor coefficients 

, 0 ][n m x x    of 0[ , ]x xψ z  are expressed as a function of the Gabor coefficients 0, [ ]s f x  of 

0[ ],xψ z . In an analogous manner to Split-Step Fourier, a field profile is converted into the Gabor 

domain, marched with the Gabor-domain propagator (0.26), and converted back to the spatial 

domain for plotting and for spatial-domain operations such as phase screens. The application of 

the Gabor-domain propagator is visualized in Fig. 1.4 and Fig. 1.5. 

 

Fig. 1.4. Wave propagation in the Gabor domain. Each nonzero coefficient in the Gabor 

representation of an initial wavefront 0, [ ]s f x  (left) is multiplied by an associated propagation 
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matrix [ , , , ]s fP n m  (center) and added together to form the resultant Gabor coefficients 

, 0 ][n m x x    (right). 

 

Fig. 1.5. A wavefront is advanced in the Gabor domain (left, center), and Inverse Gabor 

Transforms are used intermediately to compute the spatial-domain wavefront (right). 

B. Sparsification of Gabor Coefficients 

The principal advantage of propagation in the Gabor domain is the ability to sparsify field 

representations. A Gabor Coefficient matrix can be thresholded such that only coefficients above 

a certain tolerance are stored. By sparsifying the coefficient matrix at 0x  given by 0 , , ][xΦ n m , 

(0.26) will only operate over a small number of ,s f  indices. This substantially reduces memory 

consumption and improves speed for propagation steps.  

The sparsification operation is applied to 0 , , ][xΦ n m  at each 0x x . In cases where a 

forward Gabor Transform is computed, either in generation of fields or in local spatial-domain 

processing, a sparsification is also performed. 

In the same manner that propagating fields can be sparsified, the propagation matrices 

, , , ][s fP n m  can also be sparsified. By reducing the number of nonzero elements of a propagation 

matrix, the propagation step (0.26) becomes an addition of sparse matrices, reducing computation 

time. 

C. Local Inverse Gabor Transform 

A critical design feature of Gabor-based propagation is the reconciliation of Gabor representations 

with spatial domain phenomena. In some cases, the spatial-domain operators can be represented 

exactly in the Gabor domain. In other cases, it is necessary to convert a field profile back to the 

spatial domain in order to apply an operator accurately. This section introduces a framework that 

will be used extensively in this thesis for processing spatial-domain phenomena while maintaining 

the sparsity advantages of Gabor frames. 
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In many cases, the spatial-domain operation to be performed only concerns some subset of 

the z  domain; for example, an absorbing layer only occupies the edge of the domain. An inherent 

advantage of Gabor analysis is that it locally represents spatial information; this property can be 

exploited to only perform an inverse Gabor transform about some subset of the Gabor plane, rather 

than of the entire plane. 

This section introduces the local inverse Gabor transform. The procedure is straightforward 

in principle: When computing an inverse Gabor transform of a Gabor representation with size 

N M , only some subset inv  n  of all N  spatial indices are iterated over to obtain a spatial 

domain signal. To perform a forward transform, again only some subset fwd  n  of all N  spatial 

indices are iterated over to construct a set of local Gabor coefficients. 

A nontriviality in this procedure that must be addressed is that Gabor representations are 

not unique. If a spectrum supported by inv  is transformed to the spatial domain and then 

transformed back to the Gabor domain, the support of the new representation is not necessarily 

inv ; rather, it can only be guaranteed that the support spans fwd  plus all immediately 

neighboring indices n  to the support of fwd . So, for example, if inv {3,4,5} , then 

fwd {2,3,4,5,6} . This behavior is due to Gabor windows overlapping spatially. 

Let an indicator vector ][ns z  be defined by 

 ,

,

[ ] 01,[ ]
0, [ ] 0

n m

n m
n

z
z

z
 

   

g
s

g
, (0.27) 

where the vector 
inv

[ ]
n n s z  represents the total support of all 

, [ ]n mg z  for all invn . If [ ]ψ z  

is some spatial domain profile, the local Inverse Gabor Transform is defined as 

 local ,,

,

[ ] [ ]
inv

m n m

n m

n 
 

 
m

ψ z g z , (0.28) 

where 
inv

][ ] [ ] [
nlocal n

ψ z ψ z s z , and the Gabor coefficient spectrum Φ  has elements 

, ,
][ ], [

n mn m  ψ z g z . The procedure for updating the Gabor coefficient matrix Φ  is as follows: 

First, the spatial domain vector is constructed as per (0.28). Next, the spatial domain operation is 

applied to local[ ]ψ z . The new Gabor-domain fields are then constructed by setting 
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local

inv

fwd in
a

,

,
v

, loc ,l

[ ] ,

[ ] ,

[ ],

[ ],m

n m

n m

n mn

n
n




  
  




 

ψ z g z

ψ z g z
. (0.29) 

A difficulty with this procedure is that the entire support of local[ ]ψ z  must be stored, and extra time 

is needed in order to compute a forward Gabor transform over the set fwd  which is larger than 

inv . In order to describe a method that resolves this problem, it helps to re-define the Gabor 

Transform operations in terms of Fourier Transforms and linear algebra notation. 

Consider a Gabor coefficient matrix [ , ]Φ n m  corresponding to a spatial domain vector 

[ ]ψ z . The matrix can be represented in row-vector format as 

0 1 1[ ], [ ] ], , [ ][ , ] [ T

N   Φn m m m m . Recall that the elements of the row vectors are computed as 

( )( )[ ][ ] i mb na

n na e  z
m g z . This expression is equivalently a Fourier Transform, given by 

 [ ] [ ]}[ ] FFT {n

n na z  m g z ψ z , (0.30) 

where 

 }FFT { F T[ {]} [F ]n

nf z f z , (0.31) 

with the local vector  

 , ( 1) , , ][( 1)n z n a z z n z zn a a       z z  (0.32) 

corresponding to the support of the n th Gabor window function. Likewise, [ ]ψ z  can be 

reconstructed from the row vectors by using an Inverse Fourier Transform, given by 

 
1

0

[ ] [ ]IFFT [ ]}{
N

n

n

n

na z 




  ψ z g z m , (0.33) 

where 

 
ˆIFFT{ [ [ˆI ]{ } ],]F }[ ]

0
[

,
F Tn nz

z
n

z n
z

az z z 
   

  zf kf k
z

 (0.34) 

is a localized Inverse Fourier Transform written to the support of the n th Gabor window function. 

Suppose a linear spatial domain operator is to be applied pointwise to [ ]zψ ; this operator 

can be described by a diagonal matrix D , where the aim is to obtain a representation for [ ]zDψ . 
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The objective of this procedure is to efficiently formulate some Gabor coefficient set, expressed 

as a set of vectors 
0 1 1[ ], [ ], ,, [ ][ ] [ ]T

ND Φ n m h m h m h m  from some operation on [ , ]Φ n m , such 

that [ ] IGT{ [ , ]}DDψ z Φ n m . Theorem 1.1 is the basis for the improved method. 

Theorem 1.1:   Consider a vector [ ]ψ z  and its Gabor coefficient matrix 

0 1 1[ ], [ ] ], , [ ][ , ] [ T

N   Φn m m m m . If D  is a diagonal matrix, then  

 
1

0

[ ] [ ]IF ]F }{ [T
N

n

n

n

na z




  Dψ z g z h m  (0.35) 

Where [ ]nh m  is given by IFFT { }[ ] = FFT { [ ]n n

n nh m D m . 

Proof: Let  

 
1

0
[ ] [ ]IF }F [ ]T {

N n

c nn
na z




  ψ z g z h m , (0.36) 

where IFFT { }[ ] = FFT { [ ]n n

n nh m D m . After substituting in the definition for [ ]nh m , successive 

forward and inverse FFT operations cancel one another out and (0.36) reduces to  

 
1

0
[ ] [ ] IFFT }{ [ ]

i

N n

c nn
na z 




  ψ z g z D m . (0.37) 

Since D  is diagonal and linear, it commutes and distributes and thus it can be pulled out in front 

of the summation, yielding 

 
1

0
[ ] [ ]IFFT { }[ ]

N n

c nn
na z 




  ψ z D g z m . (0.38) 

And so by (0.33), [ ] [ ]c ψ z Dψ z . ∎ 

Theorem 1.1 can be regarded as a slight variation on a conventional Inverse/Forward Gabor 

Transform procedure. Theorem 1.1 shows that a spatial-domain function multiplied with a 

diagonal operator (such as a phase screen) [ ]Dψ z  is equivalent to [ ]cψ z , which has a Gabor 

coefficient set [ ]nh m  that can be computed with a series of localized FFTs/IFFTs rather than a 

full Inverse and Forward Gabor Transform. 

In other words, rather than computing a series of Inverse Fourier Transforms and 

multiplying each transformed vector by a window function before summing together, as in 
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equation (0.33), the window function and summation step is skipped and the pointwise operator 

D  is applied to each individual vector. By avoiding summing vectors together, these individually 

transformed and updated vectors can be immediately Fourier Transformed back into the Gabor 

domain, without need for an expensive forward Gabor Transform operation given by (0.30). This 

procedure is only possible because of D  being a linear and diagonal operator. There are three 

performance improvements yielded by this procedure: 1) No time is spent multiplying vectors by 

window functions, 2) only one vector of length 
pN  has to be stored at a time, and 3) the extra 

steps caused by inv  being a proper subset of fwd  are avoided. 

Theorem 1.1 can be used to efficiently update a Gabor coefficient set in-place. Suppose 

that 0Φ  is the Gabor coefficient set for 0[ ]ψ z , and that some diagonal linear operator D  is to be 

locally applied to generate 0[ ]zDψ  , where the diagonal of D  has support such that 

 
inv

[ [ ] [ ]]
n n

0 0
Dψ z Dψ z s z , where  is the pointwise product. The revised update 

procedure, for a diagonal matrix D , is given by 

  FFT { [F ] ,[ ]
[ ]

I FT }
,
{n n

invn
n

invn

n
n







 D m
m

m
. (0.39) 

D. Radiation Boundary Conditions 

This section discusses Radiation Boundary Conditions on the top edge of the domain, where 

upward-traveling radiation is expected to propagate forever into the sky without reflection. A 

problem inherent to spectral propagators such as Split-Step Fourier is that the Fourier Transform 

enforces periodic boundary conditions. Since Gabor propagation is based on SSF, this issue 

persists. Many existing methods to mitigate this issue and absorb outgoing radiation are expensive 

or difficult to implement, but a Gabor-domain RBC can be implemented by simply deleting excited 

Gabor coefficients that escape the domain. 

Consider a field profile 0 , , ][xΦ n m  in the Gabor domain with elements , 0[ ]n m x , that is to 

be marched forward to produce  0 ][ ,,xx Φ n m  with elements , 0 ][n m x x   . Consider an 

arbitrarily large auxiliary domain, where Gabor coefficients are allowed to spread over 

n    . Let ,

aux

0 ][n m x x   be the fields marched from , 0[ ]n m x  with (0.26) according to this 
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new domain. The resultant fields are bounded to the true domain by simply deleting coefficients 

that escape 0 2n N    on the auxiliary domain. More precisely, 

 
a

,
,

ux

0
0

]
o

[ , 0 2
[

th r
]

e wise0,
n m

n m

x
x

x n N
x




    
   







. (0.40) 

2N   is chosen as the upper bound rather than 1N  , because the spatial support for 1, [ ]N mg z  

wraps around the end of the z  domain; this is due to the overlapping nature of the Gabor window 

functions. 

This implementation of Radiation Boundary Conditions is extremely memory-efficient. No 

storage space inside the domain is required for its implementation. While the marching operation 

makes use of an auxiliary domain, such an auxiliary domain doesn’t need to be stored in practice; 

before each addition in (0.26) is executed, a check can be performed on whether the fields will 

escape the true domain. If they are found to be out of bounds, the addition is not carried out and 

no resources are consumed except for the bounds checking. 

There are two sources of error associated with this method. One is that, due to Gabor 

window functions overlapping in the spatial domain, coefficients corresponding to 0n   and 

2n N   will be slightly inaccurate since they neighbor the deleted indices. Secondly, a reflection 

is introduced by the hard truncation. This reflection is larger for shallow angles of incidence, and 

smaller as the angle of incoming radiation approaches the normal direction to the boundary. Since 

conventional absorbing layers have the opposite relationship between absorption and incident 

angle, a practical solver can hybridize both a thin absorbing layer and Gabor RBCs, enabling each 

method to overcome the shortcomings of the other. The absorbing layer can be implemented via 

local Inverse Gabor Transforms as per (0.39). 

1.5 Phase Screens in the Gabor Domain 

This section discusses Gabor propagation through inhomogeneous space. In conventional Split-

Step Fourier, the propagator assumes free space; inhomogeneities must be handled in the spatial 

domain. This is achieved with phase screens, as shown in (0.4). Since the phase screens are 

spatially applied, repeated Fourier Transforms must be computed to convert between the spatial 

domain for phase screens and the frequency domain for propagation, and this is the main 

performance bottleneck of Split-Step Fourier. 
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Much like the Fourier domain, the phase screen operation has no direct analog in the Gabor 

domain, since each Gabor atom corresponds to wide, overlapping spatial domain coverage. One 

approach is to apply phase screens in the spatial domain, which is exact, but requires expensive 

forward/inverse transforms and uses excessive resources in storing the spatial domain. In other 

implementations of wavelet propagators, the refractive index profile is sampled in and directly 

applied in the Gabor domain.  

This section will improve upon existing methods for phase screens in wavelet-based 

propagation by modifying the propagation matrix set to directly store atmospheric information. 

One possible approach to this is to generate a propagation matrix for each spatial bin s  and store 

the phase screen associated with such bins inside the propagation matrix, but this would require 

precomputing the propagation characteristics of * pN N  fields which is costly in time and memory. 

In the interest of computing only one propagation matrix set and recycling it for all s , 

simplifications must be made. 

Consider the simplest smooth inhomogeneous atmosphere, a linear profile [ ] n z z , 

where   is some small positive constant. Since the derivative '[ ] n z  is a constant, every 

element of a wavefront 0[ ],xψ z  will refract in exactly the same manner regardless of height when 

marched through space. This property can be exploited; a phase screen that refracts according to a 

linear profile can be built into a single propagation matrix set. 

A. Propagation Matrix with Built-in Phase Screen 

The ( , )s f  element of the propagation matrix set for an arbitrary refractive index profile can be 

written as 

 
[ ]

,
( [ 1)]

] GT{IFFT{ [0, , ], }

}

[ , xi
s f

i

x

k x

s f e

e









zk k

z
n z

P n m b k , (0.41) 

where , [0, ]s f zkb  is the Fourier Transform of a beamlet shifted and modulated by ( , )s f  at 0x 

. The linear refractive index profile [ ] n z z  is substituted in to (0.41) to produce 

 
[ ]

,
( 1)

[ ] GT{IFFT{ [0

}

, , , ] }, xi x

x
s f

ik

e

e

s f
 









zk k

z
z

P n m b k , (0.42) 
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where ],[ , ,s fP n m  is ][ , , ,s fP n m  generated according to a linear refractive index profile with 

slope  . The objective is to reformulate ],[ , ,s fP n m  in terms of a runtime operation on 

],[1, ,fP n m , such that only M  matrices of size N M  need to be generated and stored for a 

linear refractive index profile. 

The phase screen term in (0.42) can be rearranged and expanded to produce 

 
)( ( 1) ) (1) 1)( ( 1zik ik xikx s a x se e e         z z

. (0.43) 

As the term 
( 1)s xike   

 is only a function of s , it can be pulled out of the Gabor Transform operator. 

At 1s  , (0.42) combined with (0.43) simplifies to 

 1,
( 1)

[ ] GT{IFFT{ [0, ] }

}

1, , , x x

ik x

i
ff e

e






 





k

z
z

P n m b k . (0.44) 

By exploiting a shifting property of the Gabor frame used in this thesis 

 0 0[ , ] GT{ [ ]}n zan   Φ n m ψ z , (0.45) 

(0.44) can be rewritten as 

 ( 1), , , 1, ,( ) 1,[ ] [ ] s xiks f n m f n s m e 

 

  P P . (0.46) 

So for a linear refractive index profile with slope  , an initial propagation matrix set is 

precomputed as (0.44), and (0.46) is used at runtime to compute the propagation matrix for any 

spatial bin s  in terms of a shift and a multiplication of (0.44). Using this propagation matrix set 

on the propagation operator (0.26) is an exact representation of fields propagating according to a 

linear refractive index profile. 

B. Refractive Index Profiles with Nonuniform Slope 

The next complication arises in the case of a bilinear or trilinear atmospheric profile, as is common 

in ducts over oceans or in piecewise linear approximations to smooth profiles. When marching 

fields far away from corners in the refractive index profile, the process outlined in (0.44) and (0.46) 

can be repeated, however a new set of propagation matrices must be computed for each unique 

slope in the refractive index. 

Near corners, the method derived in section A is not valid, therefore corners must be treated 

separately. The most effective option is to simply perform a local inverse Gabor Transform over 
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only the spatial bins that have a corner in their regions of support, apply the exact phase screen in 

the spatial domain, and transform back to the Gabor domain. The pitfalls of spatial domain 

processing are mitigated by the localization of the inverse transforms. 

The procedure for marching through space with a piecewise linear refractive index is as 

follows. First, let sN  be the number of unique slopes in the piecewise linear refractive index profile 

[ ]n z , and let these unique slopes be denoted by 21, ,...,
sN   . Once all of the slopes are 

determined, propagation matrices 
1 2
, , ,

sN  P P P  are generated for each slope as per (0.44). 

Each vertical point zz  is associated with the refractive index slope at that point, and 

each Gabor atom is assigned a slope based on which point in z  it lines up with. The spatial location 

is given by ( )winloc zz n na   where n  is the spatial Gabor index. The equation mapping a Gabor 

atom index ( , )n m  to a slope   is given by 

 ( ) '[ ]an zn  n , (0.47) 

provided 1 2 },'[ ] ,{
sNz   n  for all zz . 

Equation (0.26) is modified to  

 
,

0 0 (, , )( ) ( ) [ , , , ]n m s f

s

n

f

x x s f n mx     P , (0.48) 

where ( )[ , , , ]n s f n mP  is computed from 
( )[1, , , ]n f n mP  at runtime according to (0.46). 

Once all Gabor coefficients are marched, corners must be treated. Let c  be the set of all 

spatial bin indices n  where a corner exists inside their regions of spatial support. A local inverse 

Gabor transform is performed, modified such that the Gabor-domain phase screens are locally 

undone in the process, 
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. (0.49) 

Once the local inverse transform is complete, a spatial-domain phase screen is applied, given by 

 0 ( [ ] 1)
[ [, ] , ]

x z

local local

ik
x xx z x z e

 
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n
ψ ψ , (0.50) 
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which exactly represents the effect of [ ]zn  on propagation. A forward partial Gabor transform is 

then applied, and the coefficients are written back into 0 ][ , ,x x n mΦ  as per (0.29). 

The procedure can be easily modified to follow (0.39) as well, and results in a substantial 

performance improvement when implemented. With this modification, the update formula is 

  [[FFT { n, ] ,[ ]I {]
[ ],

FFT }

c

n n

n n
n

n

cn
n







 p z m
m

m
, (0.51) 

where 0 ( ) ( ) ( )( ( 1 [ ]))
[ , ] n nx n n zik a n n

nn e
    


z n z

p z . 

1.6 Numerical Results 

This section shows the numerical implementation of Gabor frame-based propagation in 2D. 

A. Sparsification Error 

Since the Gabor coefficient set is thresholded at regular intervals, there is an associated error that 

grows as the sparsification operation is applied repeatedly. A simple scenario of a Gaussian 

marching through free space is studied in order to characterize the behavior of such inaccuracy. In 

Fig. 1.6a, a scenario is defined where a 300 MHz Gaussian beam of beam waist 15 m is marched 

through free space with two schemes: One with Split-Step Fourier, another with the new Gabor-

domain propagator. The Gabor propagator is sparsified according to the procedure outlined in 

section 1.6. Seven scenarios are simulated, each with a different sparsification threshold  . One 

such scenario is visualized in Fig. 1.6b. At each step in x , the error is computed, defined by 

 
2 20 0( ) ( )[ ] ( )[ ] / ( )[ ]E x x x x ψ z ψ z ψ z . (0.52) 

 Where ψ  is ( )[ ]xψ z  with thresholding applied and 0ψ  is ( )[ ]xψ z  with no thresholding. The 

domain is discretized with 100x  meters, 50xN  , 0.501z   , and 1024zN  . An absorbing 

layer is active with a 2 km thick error function window tuned such that a beam incident at 0.5 

degrees from horizontal is attenuated by 40 dB. In the Gabor method, RBCs are active, and 

64pN  . 
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Fig. 1.6. Error of a propagating Gaussian beam, measured at different sparsification threshold 

levels. 

Fig. 1.6 shows that a higher sparsification threshold corresponds to a lower error, as a higher 

threshold means less coefficients are used to represent a signal. The relative benefit from 

decreasing the threshold, and therefore increasing the number of stored coefficients, diminishes in 

this case once the tolerance reaches 
1.510

. Another observed behavior is that after a dramatic 

increase in the first 500 meters, the error remains nearly flat over all space. In larger-scale 

problems, this is similarly observed; sparsification error tends to remain relatively stable in 2D 

atmospheric propagation.  

B. Radiation Boundary Conditions 

The Gabor-domain Radiation Boundary Conditions are tested in isolation. Efficacy of an RBC 

implementation can be determined by launching a plane wave towards the boundary and measuring 

the amount of energy that remains inside the domain once the beam is expected to have fully 

crossed through the boundary. 

To approximate a plane wave, a Gaussian beam with a wide beamwidth is launched at the 

upper boundary for a range of angles of incidence between 0 and 10 degrees from horizontal. Three 

cases are studied: Gabor RBCs in isolation, a conventional Absorbing Layer in isolation, and then 

a hybrid Gabor RBCs + Absorbing Layer. The relationship between the reflection coefficient and 
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the incident angle is shown in Fig. 1.7; a smaller reflection coefficient indicates that the boundary 

is more effectively behaving like a radiation surface. The frequency is 300 MHz, the beam waist 

is 1 km, and the absorbing layer is a 2 km thick error function window tuned such that a beam 

incident at 0.5 degrees from horizontal is attenuated by 40 dB. The vertical domain size is 162  

wavelengths, with 1z    and 64000x  . The Gabor window width is 128, and the threshold 

for sparsification is set to 
510
 multiplied by the 1-norm of the Gabor coefficient set; setting the 

sparsity threshold this low effectively nullifies the error due to sparsification. 

 

Fig. 1.7. Comparison of the reflection coefficient of three implementations of upper domain 

truncation (Gabor RBCs, Absorbing Layer, combined Gabor RBCs and Absorbing Layer), versus 

angle of incidence measured from horizontal. 

Fig. 1.7 shows that Gabor RBCs reflect more radiation back into the domain as the angle of 

incidence is more shallow; however their absorption is very effective as the angle of incidence is 

steeper. An absorbing layer shows the opposite relationship; since incident radiation at a shallow 

angle travels a longer distance through the absorbing medium, the measured attenuation is higher 

than if it were at a steep angle and only traveled a negligible distance through the absorbing 

medium. When the two methods are hybridized, they work extremely well together as a radiation 

boundary condition that achieves minimal reflection for a broad range of incident angles. 

C. Earth Curvature 
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SSF is based on a flat-Earth coordinate system; to correct for this, the curvature of the Earth can 

be modeled as an equivalent refractive index profile: 

 [ ] [ ]eq

er
 

z
n z n z  (0.53) 

Where er  is the radius of Earth in meters. 

A Gaussian beam centered at 100 meters with waist 10 m, with a frequency of 8 GHz, is marched 

through an ionospheric profile with Earth curvature correction. Since the atmospheric profile is 

approximately linear, the phase screens can be entirely applied in the Gabor domain while 

maintaining accuracy. This facilitates extremely fast simulation time relative to conventional SSF. 

The ionospheric profile is given by 

 6 exp( 0.136 )[ ] 315 10 n z z . (0.54) 

The domain parameters are 100x   meters, 0.501z   , 32768zN  , 500xN  , and an error 

function absorbing layer of height 123 meters tuned to attenuate incident radiation at 0.5 degrees 

by 200 dB. Gabor parameters include active RBCs, 1024pN  , and sparsification threshold 

110  . The error computed is defined as 

 2

2

( )[ ] ( )[ ]
( )

( )[ ]

SSF Gabor

SSF

x x
E x

x



ψ z ψ z

ψ z
. (0.55) 

The field strength is visualized in Fig. 1.8, the stored field coefficients in one slice is shown in Fig. 

1.9, and the number of stored field coefficients and error are shown in Fig. 1.10. 
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Fig. 1.8. Plot of path loss for a Gaussian beam marching through an ionosphere with Earth 

curvature correction 

 

Fig. 1.9. Log-scale plot of the Gabor coefficient set at 9950x   meters. Colored bins are stored 

coefficients, empty bins correspond to no stored data. 
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Fig. 1.10. Left: Plot of the number of stored nonzero Gabor coefficient bins at each position in 

range for the ionosphere + Earth curvature case. Right: Plot of the error incurred by the Gabor 

method at each position in range for the ionosphere + Earth curvature case. 

Solver Type Average Step Time (ms) Peak Memory Usage (# 

points) 

Split-Step Fourier 4.8 32768 

Gabor 0.535 310 

Table 1.1. Comparison of CPU time and number of stored points for the simulation in Fig. 1.9 on 

a 3.0 GHz Intel Xeon Gold 6154 with one processor allocated. 

The Earth Curvature scenario was described extremely well by the Gabor method. Fields can be 

observed smoothly bending upwards in accordance with the curvature of the Earth in Fig. 1.8. Fig. 

1.9 shows that most nonzero field coefficients are clustered around a small region. Resulting from 

this structure, Fig. 1.10 shows that fields were modeled with an error of approximately 0.3%, and 

at most only about 300 Gabor coefficients were excited, in contrast to SSF which used 32768 

coefficients. The time taken to march through space and apply the phase screen was on average 

4.80 ms per step for SSF, and the Gabor method took on average 0.535 ms per step to march and 

apply the phase screen, as shown in Table 1.1. This means that Gabor propagation was 

approximately nine times faster than SSF propagation. 

D. Sparse Long-Range Propagation 

The classic problem in Split-Step Fourier is that of marching over an ocean in the presence of an 

atmospheric duct. This procedure is implemented in the Gabor framework, exploiting Gabor-

domain phase screens and sparsification in order to achieve faster performance than Split-Step 

Fourier. 
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A 60 GHz horizontally polarized Gaussian beam with a 2 meter waist centered at 10z   

meters is marched above an ocean, which is modeled as a perfect electric conductor. Image theory 

is used to reflect fields off of the ocean; the domain and initial wavefront are mirrored about 0z 

, with a reflection coefficient of 1 . Above the ocean exists an atmospheric duct, which in 

conjunction with Earth curvature correction, can be described as a trilinear refractive index profile 

visualized in Fig. 1.11. 

 

Fig. 1.11. Trilinear ocean refractive index profile. 

Since the profile is not uniformly linear, partial inverse Gabor transforms are used about the 

changes in slope, as per section 1.8. When the refractive index profile is mirrored about 0z   for 

imaging, the total profile has four unique slopes, so a propagation matrix set is generated for four 

different slopes. The domain is discretized with 50x   meters, 0.501z   , 2000xN  , 

524288zN  , and an error function absorbing layer of height 123 meters tuned to attenuate 

incident radiation at 0.5 degrees by 200 dB. The Gabor window width was set to 2048pN   with 

a sparsification threshold of 
0.810   multiplied by the 1-norm of the Gabor coefficient set. 
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Fig. 1.12. Plot of path loss for a Gaussian marching through an ionosphere with Earth curvature 

correction. 

 

Fig. 1.13. Log-scale plot of the Gabor coefficient set at 49550x   meters. Colored bins are stored 

coefficients, empty bins correspond to no stored data. 
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Fig. 1.14. Left: Plot of the number of stored nonzero Gabor coefficient bins at each position in 

range for the ionosphere + Earth curvature case. Right: Plot of the error incurred by the Gabor 

method at each position in range for the ionosphere + Earth curvature case. 

Solver Type Average Step Time (ms) Peak Memory Usage (# 

points) 

Split-Step Fourier 82.6 524288 

Gabor 24.5 2200 

Table 1.2. Comparison of CPU time and number of stored points for the simulation in Fig. 1.12 on 

a 3.0 GHz Intel Xeon Gold 6154 with one processor allocated. 

Fig. 1.12 shows a beam smoothly propagating through a duct above an ocean. While some 

radiation deflects upwards due to the curvature of the Earth, other radiation gets trapped inside the 

duct. As propagation inside the duct is beamlike, the wavefront can be represented in an extremely 

sparse manner with negligible error. In Fig. 1.13, at a particular field slice at about 50 km, the 

sparse field data is all clustered about a small region in the Gabor space-frequency plane. This is 

further shown in Fig. 1.14, where the error remains below 2% while the number of stored field 

coefficients is bounded by about 2000. The time taken to march through space and apply the phase 

screen was on average 82.6 ms per step for SSF, and the Gabor method took on average 24.5 ms 

per step to march and apply the phase screen, as shown in Table 1.2. This means that Gabor 

propagation was approximately 3.4 times faster than SSF propagation. The fast computation time 

and accurate modeling of fields marching through complex atmosphere indicates that the phase 

screen method works as intended; fields are refracted without performing expensive full-domain 

inverse and forward Gabor Transforms.
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Chapter 2. Adaptive Multiresolution Gabor Transforms for 

Optimal Sparse Field Representations 
 

2.1 Introduction 

Wave propagation scenarios involve complex interactions with environments and atmosphere. 

Excitations from transmitters themselves even may be complex. Such complexities induce fields 

that may have steep gradients in some locations and shallow gradients in other locations. This 

creates a problem for discretizing numerical problems, as a one-size-fits-all solution is difficult to 

establish without sacrificing resources or accuracy.  

Gabor frame-based propagation is limited in its ability to model multiscale fields. The 

window functions utilized by the Gabor Transform have the same width at every spatial and 

frequency index. Such uniformity may not be the optimal way to describe complex field profiles, 

as different window widths can encapsulate different features, and a field that is sparsely 

represented by a transform under one window width may not be sparsely described by a transform 

under a different window width. There exists a strong need for an adaptive Gabor transform that 

can accommodate multiscale features. 

This chapter outlines an adaptive multi-window Gabor Transform to optimally sparsify 

field representations. The adaptive Multi-Gabor Transform is introduced, which partitions the 

Gabor domain into different regions, and the Gabor discretization of each region is locally picked 

for maximum sparsity. The propagation framework from chapter 1 is modified to accommodate 

the Multi-Gabor Transform. 

2.2 Multiresolution Gabor Transform 

This section recounts and adapts the work of [63] by defining a framework for a multiwindow and 

multilayered Gabor expansion of a signal, referred to as the Multi-Gabor transform. The Multi-

Gabor transform is intended to achieve more sparse signal representations than the uniform Gabor 

transform by adaptively selecting the best Gabor discretizations for subsections of the space-

frequency plane. 



35 

 

The multi-Gabor transform can be understood as a partitioning of the space-frequency 

plane into different regions. Each region will use a different Gabor window width. An example of 

such a partition is visualized in Fig. 2.1. A signal is represented in the multi-Gabor domain by 

locally applying a Gabor transform in each region; the multi-Gabor coefficient set can be regarded 

as a collocation of different Gabor coefficient sets covering different regions of the space-

frequency plane, where there is one set for each unique window width. The window width of each 

local region is selected for optimal sparsity. 

 

Fig. 2.1. Example of a partitioning of the Gabor space-frequency domain; different Gabor window 

widths, denoted by 
pN , are used to model different regions. 

In implementation, the Multi-Gabor framework is not a straightforward partition. The space-

frequency plane canot be elegantly partitioned into non-overlapping regions due to complications 

with the mapping between the Gabor and spatial domains. The window functions used by the 

Gabor transform have a spatial overlap factor of 1/ 2 . In order for it to be possible to perfectly 

reconstruct a function from the information in a Gabor representation, the condition 

 
0

2

,0 ][ 1n

n

z



n

g  (2.1) 
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must be satisfied for all zz , where n  is the set of all possible values for the Gabor spatial index 

n . 

The overlap factor ensures completeness of the Gabor transform; however, the condition 

in (2.1) is not satisfied if n  is partitioned into regions of different window widths for the 

corresponding ,0 ][n zg  functions. If two neighboring regions in the space-frequency plane use 

different window widths, there exists space between the regions that isn’t fully supported by a 

window from either region. This is shown in Fig. 2.2. 

 

Fig. 2.2. Example of the Gabor window functions of two neighboring regions with window widths 

64pN   and 256pN  , showing insufficient overlap at the interface if the space-frequency plane 

were perfectly partitioned. 

To resolve the overlap factor issue, the regions of different window widths are expanded and 

allowed to overlap slightly in the space-frequency plane, to ensure that the Multi-Gabor 

representation is overcomplete. With this correction, the actual Gabor space-frequency 

representation is treated as a collection of distinct space-frequency planes, all with overlapping 

spatial support in their regions of interest, shown in Fig. 2.3. 
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Fig. 2.3. Revision to Fig. 2.1, showing what the true multi-window divisions of the space-

frequency plane look like; each of the four subplots shows the portion of the space-frequency plane 

covered by each window width. Note that such regions overlap; the support for the region 8pN   

bleeds into the coverage of both of the neighboring 16pN   regions. 

A formulaic description of the Multi-Gabor transform follows. The Jigsaw puzzle framework will 

be used to permit different Gabor window widths to represent different regions of the space-

frequency plane. Let the Gabor-domain space-frequency plane be denoted by 

0

0 0 0 0 0 0{ , : 0 1,0 1}p

p

N
n m n N m N       , associated with some reference window width 

0pN , with 0 02 /z pN N N . Consider a collection of sN  different subsets of the space-frequency 

plane, where the i th subset is given by 0 0 0( , ) ( , )p p p

i

N N N

i i in m  . The collection is 

constructed such that  0 0 0

1

0

( , )
s

p p p

i i

i

N
N N N





 , and the sets 0 0( , )p pN N

i i  do not necessarily 

need to be connected. For each set 0 0( , )p pN N

i i , a local Gabor frame is chosen. 
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The construction 0 0 0

1

0

( , )
s

p p p

i i

i

N
N N N





  is defined for a fixed window width 0pN . Since this 

section is concerned with multi-window Gabor representations, the description of the 

discretization must account for varying window widths within different subsections of a field 

representation. If some 1pN  is chosen as a power of 2 multiple of 0pN , then reference space-

frequency domain 0pN
 can be subdivided or combined to form the new space-frequency domain 

1pN
, and 0 0( , )p pN N

i i  can be similarly transformed to be 1 1( , )p pN N

i i  by letting 

1 0 0 1 1 0 0 1( / ), ( / )p p p pn n N N m m N N  . To simplify notation, if ( , )i i  is specified without a 

superscript, then the choice of 
pN  is left to be arbitrary. 

Let the local frame be denoted by the window width 
pN . 

pN  belongs to the set of all 

available window widths 
0 1{ , ,..., }

pp p pNNN N N
p

N . Let the set of Gabor coefficients associated 

with each ( , )i i  be denoted by the matrix ( , )i iΦ . 

Consider the collection of all Gabor coefficient sets over all subsets of the space-frequency 

plane denoted by 1 10 0 1 1
( , )( , ) ( )

total

,
[ , [ },..., [{ , ] , ] , ]sN Ns Φ Φ n m Φ n m Φ n m . Recalling that the 

forward Gabor Transform operator is notated as [ , ] GT{ }[ ]Φ n m f z , let a local Gabor Transform 

over the spatial indices n  and frequency indices m  be written as 

 ( , ) GT{ }[ , ], ( , ) ( , )
[ , ]

0, ( , ) ( , )
[ ] n m n m

n m
n m





f z

Φ . The process of constructing totalΦ  is given 

by algorithm 2.1. 

Algorithm 2.1. Elementary Multiresolution Gabor Transform 

1. Set res ] [ ][ f z f z  

2. For 0... 1si N   do: 

a. Select piN  for region i  

b. Set ( , )

res[ GT{ [ }( , ), ] ]
pi pi

pi p
N N

ii i

i

N

i

N
Φ n m f z  

c. Set ,

1

( )
[ IGT{ }]

pi pN

i i

N i

f z Φ  

d. Set 1res ][ [ ] []  f z f z f z  

3. Set 
( (0 0 1 1 1) 1)

1 10 0 1 1

total

( , )( , ) ( , )
{ , ] , ] , ]}[ , [ ,..., [N

p N p Ns sp p p p
N NN N N

Ns

N

s

 
 Φ Φ n m Φ n m Φ n m  
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Algorithm 2.1 iteratively computes a local Gabor transform of [ ]f z  on each region ( , )pi piN N

i i

, chipping away at intervals of the residual res ][f z  with each region. The representation is exact if 

the window functions at the interface between neighboring regions ( , )pi piN N

i i  overlap enough 

such that (2.1) is satisfied for 
0

1s

pi

i

i

N
N





n , however if the overlap is insufficient, then there will 

still exist some residual res ][f z  left over after the algorithm is completed.  Provided that for all 

0

1s

piN

i

i

N

n




  , there exists some zz  such that 
, 0[ ]n m z g , then algorithm 2.1 may be repeatedly 

computed on the remaining residual, adding each new set of Gabor coefficients to the results from 

the previous iteration of the algorithm. It may occur that the optimum Gabor window width set 

piN  of the residual res ][f z  is different than that of the initial function ][f z . Because of this, the 

concept of layers is introduced: Each region will have multiple layers, indexed by j , each with a 

corresponding window width ,i j

pN 
p

N . Such regions will be denoted as ( , ) j

i i
. A new layer 

is added for each pass of the algorithm; in other words, the number of layers corresponds to the 

number of iterations needed to minimize res ][f z . 

If some totalΦ  were constructed as a collection of layers, the data structure would have 

many different layers, regions, and window widths, and after the initial forward transform, keeping 

track of all of them is cumbersome and unnecessary. Rather, each Gabor coefficient can simply be 

grouped by its associated 
pN . The structure and number of elements of totalΦ  can be simplified 

into a structure called multiΦ , given by 

 1 2

multi [ , [ }, ,...{ , ] [ ],] ,p p pNNpN N N
Φ Φ n m Φ n m Φ n m , (2.2) 

where each multi, ][pkN
Φ n m Φ  is the collection of all Gabor coefficients in the entire set of layers 

and regions that are associated with a window width pkN . Note that if two overlapping layers or 

regions have the same pkN , then the overlapping coefficients can be summed together to form 

][ ,pkN
Φ n m . 
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The iterative process of iteratively building multiΦ  by eliminating a residual layer-by-layer until 

res ] ][ / [f z f z  falls below some prespecified tolerance tol  is described in algorithm 2.2. 

Algorithm 2.2. Multiresolution Gabor Transform 

1. Set the residual res ] [ ][ f z f z  

2. Initialize Gabor coefficient sets 0, ][pN
Φ n m  for each 

pkN 
p

N  

3. Initialize the layer index 0j   

4. While res[ / [ tol] ] f z f z  do: 

a. For 0... 1si N   do: 

i. Pick an optimal 
pkN 

p
N  for the Gabor transform 

ii. Set curr

res[ GT{ [ }( , ), ] ] pk pk jN N

i iΦ n m f z  

iii. Set cu

1

rr[ IGT ,{ [ }] ]f z Φ n m  

iv. Set 1res ][ [ ] []  f z f z f z  

v. Set curr, ] , ] , ][ [ [pk pkN N
 Φ n m Φ n m Φ n m  

b. Set 1j j   

5. Set 1 2

multi [ , [ }, ,...{ , ] [ ],] ,p p pNNpN N N
Φ Φ n m Φ n m Φ n m  

It should be noted that if the chosen ,i j

pN  was the same for all subsets i  of the space-frequency 

plane, then the resulting transform is equivalent to the uniform-window Gabor Transform. 

With pN
Φ  defined above, the inverse multiresolution Gabor transform is given by 

algorithm 2.3. 

Algorithm 2.3. Inverse multiresolution Gabor transform 

1. Initialize the spatial domain signal [ ] 0f z  

2. For all 
pkN 

p
N  do: 

a. Set IGT{ [ }[ ] [ ] , ]pkN
 f z f z Φ n m  

What remains is the process for choosing an optimal Gabor window width ,i j

pN  for each region 

and layer ( , ) j

i i
. The representation should ensure maximal sparsity for some thresholding 

tolerance. Let ( ), ][is Φ n m  be some function that computes the sparsity of , ][iΦ n m  for the i th 
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region and j th layer ( , ) j

i i
. Let pN  be a list of all available Gabor window widths to choose 

from. The process for determining the optimal window width at layer j  is given by algorithm 2.4. 

Algorithm 2.4. Process for determining optimal Gabor representation 

1. For 10... si N   do 

a. Initialize bests    

b. For cand

pN  in pN  do 

i. Compute the Gabor Transform 
res, ] ][ GT{ [ }( )i i jcand  Φ n m f z  with 

Gabor window width cand

pN  

ii. Threshold the Gabor coefficients ][ ,cand
Φ n m  according to some tolerance 

specified by the problem statement 

iii. If ),[ ]( cand

bests sΦ n m  do 

1. Set , ][ [, ] c di anΦ n m Φ n m  

2. Set i cand

p pN N  

The choice of sparsity measure ,( [ )]cands Φ n m  depends on the problem. The original paper [63] 

uses a Shannon Entropy measure. In the case of propagation with multi-Gabor systems, choosing 

a direct measure of the number of nonzero bins in some thresholded Gabor coefficient matrix tends 

to result in the sparsest representation for the lowest introduced error. The choice of ,( [ )]cands Φ n m  

may also inform whether the thresholding of Gabor coefficients should be performed before or 

after the optimal discretization is found. 

2.3. Multiresolution Gabor Propagation 

This section describes how the multiresolution jigsaw puzzle method will be used to augment the 

traditional uniform-resolution Gabor method and increase total sparsity levels. 

Consider a collection of subsets of the Gabor domain ( , )i i  that are allowed to 

intersect; the union of all regions covers the entire Gabor domain. Consider an initial field profile 

0[ , ]xψ z . Let multi 0 ][xΦ  be the optimum multiresolution Gabor transform of 0[ , ]xψ z . 

Multiresolution Gabor-domain propagation is an extension of the uniform-resolution case. 

For each unique value of piN  pN , let [ , , , ]piN
s fP n m  be the propagation matrix set generated 

according to piN . The expression for the propagation matrix set is 
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 , 0GT{ , ]}[ , , , ] [pi piN N

s f xs f x  P n m b z , (2.3) 

where , 0 ,[ ]piN

s f x xb z  is computed from , 0[ , ]piN

s f xb z  in free space using Split-Step Fourier, 

, 0 , ], ][ [pi pN N

s f s fx b z g z , and , [ ]pN

s fg z  is a Gabor dual window function with window width 
pN , 

spatial shift index s , and frequency modulation index f . 

The Multi-Gabor coefficient set multi 0 ][xΦ  is to be marched to produce 0multi ][x xΦ . The 

propagation matrix set [ , , , ]piN
s fP n m  is applied to each u 0m lti0 , ] ][ , [piN

x xΦ n m Φ . In terms of 

the elements of 0 , ][ ,piN
xΦ n m  given by , 0 ][pi

n m

N
x , the marching formula is 

 0, , ,

,

0[ ] [ ] [ , ]pi pi pi

n m s f

s

N N N

n m

f

x x p s f  , (2.4) 

where , [ , ] [ , , , ]pi piN N

n mp s f s f P n m . 

As a Gabor representation is marched sequentially through space, two problematic 

behaviors arise: Fields contained in 0 , ][ ,piN
xΦ n m  may spread excessively into the region of 

support for some 0 , ][ ,pjN
xΦ n m  since each section is marched independently, and the field profile 

may also evolve through space such that the given multi-window discretization is no longer 

optimal. Both cases lead to excess memory consumption. Therefore, the fields must be re-adapted 

periodically: After some number of spatial steps in x , the fields are transformed back to the spatial 

domain, and the process of determining an optimal Gabor discretization are re-run from scratch. 

At terrain features such as knife edges that can induce multiscale field features, it is also often 

favorable to trigger a re-adaptation. 

2.4. Numerical Results 

In this section, three results will be discussed: A simple Multi-Gabor discretization of a multi-scale 

function, a Multi-Gabor simulation of a synthetic beam, and a Multi-Gabor simulation of realistic 

long-range propagation through a duct over knife edges. 

A. Validation 

The first study is of a simple field function with multiscale features. The function is partitioned 

into four regions, and the optimal window width is selected for each region. The function, 

partitions, and optimum window widths are visualized in Fig. 2.4. 
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Fig. 2.4. Example of a simple spatial-domain function. The vertical orange lines represent the 

different subdivisions of the domain, where within each subdivision, Multi-Gabor picks the 

optimal window width. The optimally picked window widths are shown in red for each 

subdivision. 

In fig. 2.4, narrow window widths are selected for regions with high frequency content, and a wide 

window width is selected for the region with low frequency content. Using the same threshold 

between both scenarios, a best-case uniform Gabor discretization of 32pN   is represented with 

114 nonzero coefficients and 0.8% error, while the Multi-Gabor discretization of mixed window 

widths has 107 nonzero coefficients with 0.6% error; locally optimizing window widths achieves 

both better sparsity and better accuracy than a uniform discretization. 

The first simulation is a synthetic beam profile designed to highlight the performance of 

Multi-Gabor. The initial profile is composed of two beams of different widths. The profile is 

marched through space with Multi-Gabor picking the optimal Gabor discretization. The beams 

have a frequency of 1 GHz. The domain is discretized with 10x   m, 0.501z   , and 

16384zN  . The atmosphere is a trilinear ocean duct. The ground boundary condition is 

implemented with image theory, with a reflection coefficient of 1 . Gabor RBCs and ABCs are 

active. Every 10 steps in x , the window widths are re-optimized. The marched fields are shown 
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in Fig. 2.5, the initial excitation is shown in Fig. 2.6, and a comparison to the performance of 

uniform Gabor is shown in Fig. 2.7 and Fig. 2.8. 

 

Fig. 2.5. Plot of path loss for a synthetic beam excitation. 
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Fig. 2.6. Plot of the initial excitation for the synthetic beam case. 

 

Fig. 2.7. Plot of the error incurred by (blue) Multi-Gabor and (orange) uniform-resolution Gabor 

at each position in range for the synthetic beam case. 



46 

 

 

Fig. 2.8. Plot of the number of stored nonzero Gabor coefficient bins at each position in range for 

the synthetic beam case for (blue) Multi-Gabor and (orange) uniform-resolution Gabor 

In Fig. 2.5, the two beams propagate through space and spread outwards. Fig. 2.7 and Fig. 2.8 

show that even compared to the best-case discretization using a uniform Gabor window width, the 

Multi-Gabor method achieves both increased accuracy and a lower number of stored coefficients.  

B. Long-Range Propagation 

In the next simulation, knife edges are introduced in order to induce multiscale field profiles. 

Perfectly conducting knife edges truncate fields and produce a diffraction pattern; immediately 

past the edge of a knife exists a sharp transition from otherwise smooth fields to the shadow region 

of the knife. This renders an environment with multiple knife edges an ideal scenario for 

demonstrating the utility of the multi-Gabor transform; the optimal Gabor representation for the 

diffraction pattern is not necessarily the same as for propagation through smooth atmosphere. 

The excitation is a Gaussian beam with a frequency of 2 GHz. The domain is discretized 

with 50x   m, 0.501z   , and 16384zN  . The atmosphere is a trilinear ocean duct. The 

ground boundary condition is implemented with image theory, with a reflection coefficient of 1

. Gabor RBCs and ABCs are active. Every 10 steps in x , the window widths are re-optimized; the 

window widths are also re-optimized following each knife edge. Knife edges are implemented by 
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computing a local inverse Gabor Transform about the knife, and zeroing out fields along the knife. 

The marched fields are shown in Fig. 2.9, the initial excitation is shown in Fig. 2.10, and a 

comparison to the performance of uniform Gabor is shown in Fig. 2.11 and Fig. 2.12. 

 

Fig. 2.9. Plot of path loss for a Gaussian beam excitation over an ocean duct with knife edges. 
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Fig. 2.10. Initial excitation for a Gaussian beam excitation over an ocean duct with knife edges. 

 

Fig. 2.11. Plot of the error incurred by (blue) Multi-Gabor and (orange) uniform-resolution Gabor 

at each position in range for the Gaussian beam excitation over an ocean duct with knife edges. 
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Fig. 2.12. Plot of the number of stored nonzero Gabor coefficient bins at each position in range for 

the Gaussian beam excitation over an ocean duct with knife edges case for (blue) Multi-Gabor and 

(orange) uniform-resolution Gabor. 

Fig. 2.9 shows a Gaussian beam propagating through a trilinear duct; radiation can be seen 

deflecting upwards due to the Earth curvature, as well as deflecting downwards as some energy 

gets trapped inside the duct. Each knife edge creates a diffraction pattern. From Fig. 2.11 and Fig. 

2.12, it can be seen that the multi-Gabor framework uses less memory at runtime than the uniform-

resolution Gabor framework, while maintaining the same accuracy. The savings in memory tend 

to grow over time as the diffraction patterns following knife edges interact with the ocean duct.
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Chapter 3. Hybrid Split-Step Fourier – Finite Difference Solver for 

Long-Range Propagation over Rural Terrain 
 

3.1 Introduction 

In the study of long-range electromagnetic wave propagation, there is significant interest in the 

modeling of complex terrain. Detailed terrain description is particularly relevant in the simulation 

of links in rural environments. Such links are characterized by features such as hills, buildings, 

water, mountains, vegetation, often all with varying degrees of roughness. There exist many 

methods for approximating terrain reflection, diffraction, and scattering, as well as for rigorously 

solving the wave equation, but there is no one-size-fits-all solution for large-scale problems. 

This chapter introduces a hybrid Split-Step Fourier – Finite Difference solver to accurately 

march fields over terrain. Split-Step Fourier (SSF) will be used to march fields through atmosphere 

above the terrain, and a rigorous Finite Difference (FD) solver will compute the scattering of fields 

from the terrain itself. The SSF and FD solvers are implemented in the top and bottom sections 

respectively of a partitioned domain, with a splitting and recombination occurring at each spatial 

step to produce a full field profile. The FD solver solves the Helmholtz equation with an iterative 

solver, accelerated by a sweeping physics-based preconditioner. 

3.2 Construction of Split-Step Fourier and Finite Difference Methods 

This section describes the preliminaries for marching fields through space with both SSF and FD. 

The SSF solver is exactly as outlined in previous chapters. The second solver is a finite difference 

method, which rigorously solves the wave equation for arbitrarily complex atmosphere and terrain. 

The excitation of the finite difference setup can be constructed in such a way to make the finite 

difference propagator march a field profile from slice to slice, much like SSF. The FD method is 

accelerated by a sweeping preconditioner, described later in this section. 

A. Finite Difference Solver 

A finite-difference method accelerated with a sweeping preconditioner will be used to solve the 

Helmholtz equation. In context, it will be used to march an initial profile 0 ( )z  forward by x . 
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The fields will be decomposed into TE and TM modes, where TE modes are represented by the y-

directed component yE  and TM fields are represented by 
yH . For TE modes, the Helmholtz 

equation is 

 2 2 2

0y yk E fE n   , (3.1) 

where f  is a field excitation, n  is the refractive index of the medium, and 0k  is the free space 

wavenumber. 

Consider a rectangular FD domain with directions x  (left-right) and z  (up-down). Let the 

space be discretized into rectangular coordinates, where h  is the step size in x  and z . Let h  be 

much smaller than x  from the SSF domain and also subject to the constraint that /x h  is an 

integer. In the FD domain, an element in space ( , )z x  will be denoted by the coordinates ( , )  , 

such that the point ( , )   corresponds to the location ( , )z xh h    in physical space. The 

central difference discretization of the TE Helmholtz equation is 
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The boundaries of the rectangular domain will be regarded as radiation surfaces. In order to achieve 

this, a Perfectly-Matched Layer of width bh   is introduced around all four edges of the domain. 

Equation (3.2) is rewritten as 
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where the PML terms are given by 
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and the functions 1 2,s s  are given by 
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The PML 1 2,   is defined by 
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where C  is a positive constant; C  is tuned empirically in order to minimize reflections from the 

PML. 

For TM modes, the Helmholtz equation is given by 
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1
yy H fk

n
H   . (3.7) 

There is a crucial difference between the TM and TE equations: Unlike the TE case, the gradient 

operator in (3.7) is acting on the refractive index n . In the presence of large-scale fluctuations in 

the refractive index, the discretization process must be modified. A process inspired by the Finite 

Element Method [66] is used to discretize the TM Helmholtz equation for 
yH . 

Let the one-dimensional wave equation be 
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. (3.8) 

Let H  and f  be discretized according to the Galerkin method [66], with triangular basis functions 

( )iN x  of width 2h , so that 
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The equation (3.8) is then integrated to give 
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By integrating by parts and noting that ( )iN x  vanishes at the boundaries, the left-hand side of 

(3.11) can be evaluated as 

 
 

2 2

( ) ( )1 1
( )

( )

( )j j ji
i j

H N xN
N dx dx

x xx x

N x x
x H

n n x

  
 
   








  , (3.12) 

The system then has the matrix representation 
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where the elements away from the boundaries are 
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 ( ) ( )i ib N x f x dx  . (3.15) 

The integral (3.14) is evaluated over the width of one basis function at an arbitrary point x , and is 

split into two parts 
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These evaluate to 
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One line of the matrix equation represented by (3.13) is given by 
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The non-laplacian terms can be regarded as averages and grouped together to form 
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The expression then simplifies to 
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In two dimensions, the same procedure can be followed to produce the final expression that is used 

in the FD solver, 
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Equation (3.25) is discretized to form the TM central difference equation 
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With the PML as defined in (3.6), the TM central difference equation becomes 

 

2 2 2 2

2

2 2 2 2

2

0

1 2

[ [ [ [

1 [ [ [ [

( ) [
[ [ [ [

[ ( , )

1, ] 1, ] , 1] , 1]

1, ] 1, ] , 1] , 1]

, ]
1, ] 1, ] , 1] , 1]

,
( ,

]
, ) ( )

y y y y

l r d u

l d ur
y

y

s s s s

s s ssh

s s

k

       

       

 
       

   
   

    
 

    
 
    



 

 

  







H H H H

n n n n

H
n n n n

H F

. (3.27) 

In context, the FD solver will be used to march a field profile , )(i x z  from left-to-right; the x  

wall of the FD domain will be denoted as the right-hand side of the domain, and the x  wall of 

the FD domain will be denoted as the left-hand side of the domain. Since FD is not inherently a 

marching algorithm, work is needed in the construction of the excitation in order to cause it to 

mimic one. 

The solver will utilize the framework of the Total Field/Scattered Field (TF/SF) 

formulation for FD problems [67]. TF/SF partitions the domain into a “scattered field” (SF) region 

about the edges of the domain, and a “total field” (TF) region consisting of the interior of the 

domain. The FD excitation F  is supplied along the interface between the TF and SF regions. The 

Helmholtz equation is then solved for all space. 

In the context of the solver, TF/SF is used to march a field profile. An initial wavefront 

, )(i x z  propagating in the x  direction is defined along the left-hand side of the domain, with 

the aim of computing the total fields on the right-hand side of the domain, a distance of x  away 

from the location of the incident fields. Section III will describe the construction of f  and the 

extraction of a propagated field profile in more detail; the remainder of this section is concerned 

with solving the Helmholtz equation. 

While the Helmholtz equation can be solved directly with an iterative scheme, the 

convergence rate is extremely slow. Thus, a sweeping preconditioner, first introduced in [68], will 

be utilized in order to accelerate the convergence rate. 
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The preconditioner will be introduced in four parts. First, the matrix representation of the 

exact inverse of the Helmholtz operator will be presented. Second, the boundary conditions of the 

Helmholtz equation will be slightly modified in order to motivate a physical interpretation of the 

matrix inversion. Third, a sweeping PML will be introduced in order to reduce an expensive matrix 

inversion to a sequence of approximate, inexpensive Green’s function solutions. Fourth, the PML 

method will be generalized to the true boundary conditions of the Helmholtz equation. 

Consider the matrix representation of the FD problem 

 Aψ f , (3.28) 

where A  is the finite-difference Helmholtz operator, and ψ  and f  are column-major vectorized 

forms of the fields and excitation respectively.  

The block-matrix representation of (3.28) is 
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 are subsets of the vectors ψ  and f , and the matrices 

ijA  are z zn n  submatrices of A . 

The matrix A  is factorized as 
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The matrices D , L , and T
L  are given by 
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The submatrices are given by 1 11S A , and 1

( 1) ( 1) ( 1)jj j j j j jj
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 L L A S . 

This factorization can be inverted to produce a solution for ψ  in terms of the excitation f  
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1 11 ( 1) 1 ( 1), jj j j j j jj
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The matrix product (3.33) has an algorithmic representation given by Algorithm 1. 

Algorithm 3.1. Inverse LDLT formula for evaluating (3.33) 

1. For 1...m n  

a. mm ψ f  

2. For 1... 1m n   

a. 1

1 1 ( 1) ( )m m m m m m



   ψ ψ A S ψ  

3. For 1...m n  

a. 1

m m m

ψ S ψ  

4. For 1...1m n   

a. 1

( 1)( )m m m m m m



 ψ ψ S A ψ  

While the LDLT inversion is exact, it is still not efficient enough; in the inverted matrix 1D , each 

element 1

jS   requires the computation of the inverses of all 1 1jS S  , where each successive 1

jS   

increases in size. 
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Instead of inverting a sequence of matrices of increasing size, an approximation will be 

made that reformulates the application of 1D  in terms of inverses of matrices of uniform size. 

This approximation utilizes the notion of half-space Green’s functions, which are introduced 

below. 

Consider a restriction of the problem A f   to the subdomain 1...j m , given by 
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As part of this restriction, the boundary conditions of the FD equation will also be modified. Rather 

than using a PML on all four sides, a PML will only be used on 3 sides; the side corresponding to 

the boundary at the m th entry ( x  wall) of the restricted domain will be replaced with a perfectly 

conducting surface. The derivation will be carried out for this modified problem, and then a method 

compatible with a PML on all four sides will be introduced, as required by the broader propagation 

problem. 

Suppose that all :jf j b  is enforced to be 0 . The restricted problem becomes 
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The LDLT factorization of the restriction of 1A  in (3.37) is 
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Due to the condition 0jf   for j b , the equation for the element m  on the right-hand side of 

(3.38) reduces to a simple application of 
1

mS 
, 

 1

m m mS f  . (3.39) 
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Equation (3.39) is the crux of the new cost-efficient method. Relating the application of 1

mS   to 

the solution of (3.38) motivates an important physical interpretation; the system (3.38) can be 

interpreted as applying a Green’s function on a domain restricted to the first m  columns to a point 

source, and extracting the last value of the resulting vector. 

More precisely, the use of the physical interpretation of equation (3.38) to solve equation 

(3.39) can be expressed as follows: let an operation m m mT f   denote the process of solving the 

Helmholtz equation on a domain restricted to 1...j m  on an excitation 

0
0

mf

 
 
 
  

, and extracting the 

mth value from the resultant   vector. The operation m m mT f   is used in place of the operation 

1

m m mS f  .  

There is now no longer a need to exactly invert a sequence of jS  matrices. However, more 

work is still necessary in order to realize a true performance improvement, as the sub-problems 

still increase in size with increasing m . A sweeping PML will now be introduced in order to 

restrict each sub-problem to a uniform, small size, independent of m . 

Consider a system restricted on the values in x :  1m b j m    . Let a PML of width b  

absorb any outgoing radiation in the left-sided direction. Provided b  is sufficiently large, solving 

the sub-problem with a restricted f  vector and extracting the mth value of the solution vector will 

be nearly identical to solving the entire system from 1...j m . 

Graphically, this process can be interpreted as sweeping a domain from left to right. At 

each slice, a local problem is solved: A field localized to the right-most column is allowed to 

locally spread, with a conducting wall along the right-most side of the domain and a PML 

encompassing all space to the left of the excitation. The right-most column of the solved field is 

stored, and is used in the process of constructing the excitation for the next slice. The PML can be 

thought of as “sweeping” from left to right as it chases the slices being operated on. 

An operator mH  can be defined to describe the operation to obtain mψ  from mf  while 

employing a sweeping PML. A modified Helmholtz equation with the sweeping PML is used; the 

PML parameters are given by 
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where LC  is tuned empirically in order to avoid reflections. The modified local Helmholtz operator 

is defined by the matrix L
A , and the matrices j

L

iA  are defined as z zn n  submatrices of L
A . 

m m mψ H f  is computed by formulating the vector 
T

T0 0 0 m
  f  of length zn b , then 

solving the equation 
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exactly, and then extracting m  from the solution. The matrix inversion is most efficiently 

performed by permuting all matrices and vectors from column-major to row-major ordering in 

order to compress the bandwidth of the matrix, and then solving with LU. This process is visualized 

in Fig. 3.1. 
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Fig. 3.1. Visualization of the sweeping preconditioner. An initial slice is provided along the left 

side of the domain (top) given by Fψ , and is marched forward (middle, bottom) for 1 xb m n    

by solving a localized Helmholtz equation mH  to produce mψ , with a PML along the left side of 

the local solution region. 

The above procedure can be encompassed into a preconditioner linear operator, given by 

 
T1

xn

b

 
 
 
 
 



F
H

H
P L L

H

. (3.42) 

The operation ψ Pf  is described by the following algorithm 3.2. 
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Algorithm 3.2. Procedure for applying the preconditioner operator to evaluate ψ Pf  

1. ψ f  

2.  1 1 1, , \b b b   
F F F F

ψ ψ A A ψ  

3. For 1... 1xm b n    

a. )( zzeros bnψ  

b. ( 1) 1...z z mn b n b  ψ ψ  

c. 
1 1 1,m m m m m   ψ ψ A H ψ  

4. For 1... xm b n   

a. )( zzeros bnψ  

b. ( 1) 1...z z mn b n b  ψ ψ  

c. m mψ H ψ  

5. For 1... 1xm n b    

a. )( zzeros bnψ  

b. ( 1) 1... , 1 1z zn b n mb m m   ψ A ψ  

c. m m mH ψ ψ ψ  

6.  , , 1 1\ b b  
F F F F F

ψ ψ A A ψ  

The parameter F  denotes the indices 1...b . 

With the problem solved for a scenario in which the right-side wall of the domain is a PEC, the 

procedure for a problem where all four side walls are radiation surfaces will now be developed. 

The domain will be partitioned down the middle into a left side and a right side. Rather than one 

PML sweeping from left to right, two PMLs will sweep from the side walls towards the center. 

The system is re-interpreted as a sequence of Green’s functions as was done for the one-

sided case, except that the Green’s functions mH  are constructed and applied in opposing manners 

depending on whether m  belongs to the left side or the right side of the domain. For 

1...( 1) / 2 1xm n   , a perfect conductor is positioned on the right-hand wall; for 

( 1) / 2 1...x xm n n   , a perfect conductor is positioned on the left-hand wall. The center element 

( 1) / 2xm n   is treated as a special case, where a Green’s function is solved with a PML on all 

four sides of the local domain; the operator 
( 1)/2xn H  excites and extracts from the middle of the 
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domain, rather than the left or right side. The procedure for the two-front PML method is given by 

algorithm 3.3. 

Algorithm 3.3. Two-front sweeping preconditioner application procedure 

1. ψ f  

2.  1 1 1, , \b b b   
F F F F

ψ ψ A A ψ  

3.  , , \
x x xb nn b n b   

E E E E
ψ ψ A A ψ  

4. For  1... 1 / 2 1xm b n     

a. )( zzeros bnψ  

b. ( 1) 1...z z mn b n b  ψ ψ  

c. 
1 1 1,m m m m m   ψ ψ A H ψ  

5. For  1... 1 / 2 1x xm n b n      

a. )( zzeros bnψ  

b. ( 1) 1...z z mn b n b  ψ ψ  

c. 
1 1 , 1m m m m m   ψ ψ A H ψ  

6. For 1... xm b n   

a. )( zzeros bnψ  

b. ( 1) 1...z z mn b n b  ψ ψ  

c. m mψ H ψ  

7. For  1 / 2 1...x xm n n b     

a. )( zzeros bnψ  

b. ( 1) 1... 1, 1z zn b n mb m m   ψ A ψ  

c. m m m ψ ψ H ψ  

8. For  1 / 2 1... 1xm n b     

a. )( zzeros bnψ  

b. ( 1) 1... , 1 1z zn b n mb m m   ψ A ψ  

c. m m m ψ ψ H ψ  

9.  , , 1 1\ b b  
F F F F F

ψ ψ ψ A ψ  

10.  , ,\
x xb n bn   E E E E Eψ ψ A A ψ  
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The parameter F  denotes the indices 1...b , and E  denotes the indices ... 1x xn n b  . The sweeping 

PML interpretation of algorithm 3 is visualized in Fig. 3.2. 

Algorithm 3 represents an operator P  such that ψ Pf . P  approximately inverts A , and 

is used to precondition the Helmholtz system 

 PAψ Pf . (3.43) 

The system (3.43) can be solved for ψ  iteratively, with methods such as GMRES. Convergence 

is empirically observed to be very fast. 
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Fig. 3.2. Visualization of two-front PML. Two field slices are defined along the left and right 

edges of the domain (top), and the local Helmholtz problems are solved from both sides 

iteratively sweeping towards the center (bottom). 

3.3 Hybridization of Split-Step Fourier and Finite Difference 

 

Fig. 3.3. Illustration of how fields are marched in the hybrid scheme; fields in the atmosphere are 

marched with SSF, while fields near the ground are marched with FD. Fields near the interface are 

smoothly blended together to form a complete profile. 

This solver combines the Split-Step Fourier and Finite Difference methods in order to build a 

robust and efficient framework to march a wavefront from one vertical slice to the next. SSF will 

be used to march fields through the atmosphere, and FD will be used to march fields over terrain 

and past obstacles. The FD component of the solver is used only near the terrain surface. The FD 
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domain is constrained to a rectangular region near the terrain interface; this small region is chosen 

to encapsulate detailed features such as terrain height changes, buildings, and vegetation. For all 

other fields outside of the small FD region about the surface, the SSF propagator will be used. 

Since the region outside an appropriately chosen FD domain is quasi-homogeneous atmosphere, 

SSF is an appropriate, efficient choice. The partitioning of the domain is shown in Fig. 3.3. 

The process of marching fields through space is described in three operations: 

1. Fields at some slice 0x  are split into two slightly overlapping regions. At the boundaries 

of the regions, the fields are tapered off with smooth window functions. 

2. Both fields are marched forward by x  in their respective regions; the fields in the SSF 

region are marched according to the Split-Step Fourier method, and the fields in the FD 

region are marched with the preconditioned FD solver. 

3. The resultant fields from the two solvers are smoothly blended together to construct the 

full field profile at 0x x  . 

The remainder of this section is a description of the full implementation detail of the hybrid solver. 

The general outline listed above serves as the guidelines for the solver, but several aspects are 

modified in practice in the interest of performance and accuracy. Most notably, the FD solver and 

SSF solvers use different resolutions, and the FD solver requires two field slices as input while the 

SSF solver only requires one field slice as input. The flow diagram for the marching procedure is 

shown in Fig. 3.4. 

 

Fig. 3.4. Flow diagram for marching fields with the hybrid scheme. 

A. Split Fields into Two Regions 



67 

 

Given a field profile at some vertical slice 0 ]( )[x zψ , the vertical domain min maxzz z   is divided 

into two overlapping intervals: The FD region min FDzz z   and the SSF region maxSSF zz z  . 

The FD region encompasses all terrain features and a small amount of atmosphere above such 

features; the SSF region contains the rest of the atmosphere above the terrain. The two regions 

slightly overlap, so FD SSFz z . 

 

Fig. 3.5. Visualization of the SSF and FD regions, showing the overlap between the regions and 

the corresponding window functions. 

Window functions will be used to smoothly separate and blend fields that exist in the overlap 

region. Two window functions FD ][w z  and SSF ][w z  are defined for all z , with the condition that 

FD ( ) 0w z   for FDz z , SSF( ) 0w z   for SSFz z , both windows sum together to unity at every z , 

and the overlap between the two windows is contained in the region SSF FDzz z  . The FD and 
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SSF fields are defined as the result of applying the window functions FD[ ]w z  and SSF ][w z  to the 

field profile: FD 0 FD 0[ , [ ] [ , ]]x z xψ z w ψ z  for Dmin Fzz z  , and SSF 0 SSF 0[ , [ ] [ , ]]x z xψ z w ψ z  

for xSSF mazz z  . The SSF and FD region partitions are shown in Fig. 3.5. In the following step, 

FD  and SSF  will be treated independently in their respective domains of support. 

B. March Fields Through Upper Region with SSF 

The fields SSF 0 ][ ,xψ z  are marched forwards to SSF 0 ][ ,x x ψ z  with the Split-Step Fourier method 

as outlined in chapter 1. The boundary SSFz  is chosen such that negligible energy escapes below 

the SSF region. An absorbing layer is used to simulate a radiation boundary at the top of the SSF 

region. 

C. March Fields Through Lower Region with FD 

The fields FD 0 ][ ,xψ z  is marched forwards by x  via a high-resolution Finite Difference solver. 

The incident fields FD 0 ][ ,xψ z  are interpolated to a higher-resolution domain FD 0 ][ ,xψ ζ  due to the 

higher-resolution requirements of the FD problem. In principle, this step could be avoided if the 

SSF z  domain were sufficiently dense such that z    , however this would come at a 

significant cost of performance of the SSF component. 
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Fig. 3.6. The formulation of the FD region, including PML placement, TF/SF region definitions, 

and locations of incident fields and output fields. Note that two input and output field slices are 

used due to the TF/SF formulation using two concentric contours. 

The TF/SF framework is used to express the incident fields in a manner that is compatible with a 

FD problem, as well as to extract the FD solution to produce a marched field. The TF/SF interface, 

along which an excitation is supplied, consists of two concentric rectangles. The incident fields 

are supplied at the left-hand side of the TF/SF interface, and the output fields are measured along 

a slice just before the right-hand side of the TF/SF interface after the full solution is computed. 

When concerned with only one-directional propagation, where there are nonreflecting boundaries 

on the right-hand side, and when a narrowly windowed incident field ensures no propagating fields 

reach the top/bottom boundaries, it is valid to only provide incident fields on the left-hand side of 

the domain; the top, bottom, and right sides of the TF/SF interface can be initialized as zero without 

loss of accuracy. 

Since the TF/SF field definition requires incident fields to be supplied in two concentric 

rectangles, the FD solver must use two field slices for the input and output. For propagating fields 

that stay below the SSF-FD interface across a step x , implementation is straightforward, as the 

two output slices from one FD region are recycled as input to the next FD region. However, there 

is slight additional complexity when interacting with fields that move between the FD and SSF 
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regions, since the SSF region only has one slice for its input/output. Fields incident from the SSF 

region onto the FD region are marched forward by one step h  with a localized Split-Step Fourier 

solver in free space. For fields incident from the FD region onto the SSF region, only the slice 

corresponding exactly to the location 0x x   is extracted. The TF/SF problem setup using the two 

pairs of field slices is shown in Fig. 3.6. 

The expression for the FD excitation F  in terms of the incident fields incF  is given by 
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where the function TE 0 ),(r    is set to unity for the TM case and to the relative permittivity at 

0( , )   for the TE case. lhs  and lhs 1   correspond to the two indices in   along the left-hand-

side boundary between the TF/SF region. 

After solving the FD system to produce Ψ , the two output field slices outF  are extracted as 

 out
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F Ψ

, (3.45) 

where rhs  and rhs 1   are a physical length x  to the right of lhs  and lhs 1   respectively. 

Because long-range field propagation is typically narrow-angle, most of the resultant field 

solution will remain confined to a small cone bounded by minz  and FDz . However, some objects 

may scatter fields at very steep angles. PMLs on the top and bottom of the FD region absorb such 

fields. As the broader problem is long-range, such steep-angle reflections would never reach the 

end of the range and can thus be safely ignored. 

Once FD 0 ][ ,x ψ  is known, the field is subsampled along   to produce FD 0[ , ]x x ψ . 

D. Smoothly Blend Fields in Upper and Lower Regions 

Now that FD 0[ , ]x zxψ  and SSF 0 ][ ,x zx ψ  are known for min FDzz z   and maxSSF zz z   

respectively, they are summed together over all min maxz z  to produce the field 0( , )x zx  . 

Upsampling and downsampling fields for the FD region when moving between slices can 

diminish accuracy as information is destroyed or approximated. This can be partially mitigated by 

directly using the output FD fields from the previous slice as input fields to the FD region in the 
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next slice. With this modification, upsampling only needs to be performed on fields that move 

from the SSF region downwards into the FD region, and downsampling only needs to be performed 

on fields that move from the FD region upwards into the SSF region. There is also freedom in 

whether the window functions are applied before or after marching by x . 

Once 0( , )x zx   is determined, steps 1-3 can be repeated to yield 0( , )x m zx   for 

1, 2,3...m   to construct the field solution for the entire computational domain. 

E. Additional Enhancements 

The solver can be augmented to accommodate backward-forward propagation, in the style of the 

two-way knife-edge propagation scheme described in [69]. As fields are marched sequentially 

through space, the back-propagating fields are saved at each slice. As the FD solver solves the full 

wave equation, both forward-propagating and backward-propagating fields are already stored in 

the FD region, so back-propagating fields can be extracted easily. By design, there are no back-

scatterers in the SSF region, so no additional processing is needed in the SSF solver. Thus, back-

scattered fields may be stored at each slice, and once the solver has completed one forward sweep 

from 0x  to maxx , the scheme can be operated in the reverse direction, marching back the stored 

backscattered fields. Backward-forward sweeping may be repeated in this manner until 

convergence. This promotes the method to a full wave equation scheme. 

3.4 Numerical Results 

In this section, the hybrid solver will first be numerically validated for accuracy and stability by 

comparing reflection coefficients and plate scattering patterns to theory, as well as by analyzing 

sensitivity to perturbations in numerical parameters. The solver will subsequently be used to 

predict path loss over long ranges in rural environments. 

Several approximations are made in the interest of improving performance. The iterative 

solver used to solve FD systems is terminated after ten to twenty iterations. The Green’s function 

matrices are also only constructed for every two to five indices; this, in effect, decreases the 

accuracy of the refractive index profile, but improves performance by not computing as many 

Green’s function matrices. 

A. Validation 

The first numerical study concerns the reflection coefficient. The reflection coefficient is computed 

by launching a Gaussian beam at a flat surface and measuring the amplitude of the reflected field. 
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In order to account for the amplitude decay of a Gaussian beam, the reflected field is normalized 

against a Gaussian beam traveling an equivalent distance through free space. The reflection 

coefficient accuracy is studied for both the TM and TE cases. 

The reflection coefficient study is performed at a frequency of 1 GHz. The domain is 

discretized with 0.501z   , 65536zN  , and 10x   m. The FD region is discretized with 

0.01h   m and 2675N   with 1875  points in the domain above the surface. The domain length 

in x  is set to be long enough for the incident beam to reflect entirely from the terrain. The ground 

has permittivity 2r i  . 
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Fig. 3.7. Comparison of the theoretical Fresnel reflection coefficient and the experimental 

reflection coefficient produced by the solver, for TM (top) and TE (bottom) polarizations. 

Fig. 3.7 shows very close agreement between the hybrid solver and the theoretical Fresnel 

reflection coefficient over a wide range of angles. The TM model, despite its increased complexity 

due to the FEM-inspired FD equation, is more accurate than the TE model; this experiment, in 

essence, validates the FEM framework for the TM discretization.  

Numerical stability of the solver is demonstrated by modulating the discretization for a 

simple terrain scattering problem. A 100 MHz vertically-polarized Gaussian beam is launched at 

a hilly terrain characterized by terrain 50 10sin( / 50)z x  , measured in meters. The SSF domain is 

discretized by 0.501z   , 512zN  . The numerical parameters for the FD domain number of 

points above the surface, the SSF step size x , and the FD discretization h . The field strength 

from one example run is shown in  
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Fig. 3.8. Heatmap of path loss for one realization of scattering from a sinusoidal surface. 

 

Fig. 3.9. Field strength along the last vertical slice in x for FD domain height above terrain = 

175, FD step size dz h  modulated, and 10x   m. 
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Fig. 3.10. Field strength along the last vertical slice in x for FD domain height above terrain = 

175, FD step size 0.1dz h   m, and x  modulated. 

 

Fig. 3.11. Field strength along the last vertical slice in x for FD domain height above terrain 

modulated, FD step size 0.1dz h   m, and 10x   m. 
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Numerical stability is observed in Fig. 3.9, Fig. 3.10, and Fig. 3.11. Under small perturbations of 

the discretization of the FD domain, the field slice remains negligibly changed. Convergence 

over FD height can be observed; in Fig. 3.11, increasing domain heights approach a consistent 

profile. 

 

B. Propagation Studies 

The first scenario studied is short-range propagation over a hilly, forested terrain. A 1 GHz 

transmitter emits fields propagating over 2 kilometers. The terrain has tree cover from 750 meters 

to 1 km, and the forest is modeled as an absorbing block with uniform permittivity. The transmitter 

has a half-power beamwidth of 6 degrees. It is mounted 2 meters from the ground and is aimed at 

the peak of the hill at 1 km. 

The domain is discretized with 0.501z   , 131072zN  , and 10x   meters. The FD 

region is discretized with / 30h  , and with 1875 points above the terrain surface and 800 points 

below the terrain surface.  

The forest is modeled as a sequence of trees. A tree is represented by a rectangular canopy 

on top of a rectangular trunk. The permittivities of the trunk and canopy models were tuned such 

that the decay rate of fields through the forest matches that of existing empirical models [70] so 

that trunk 25 0.037i  , canopy 25 0.001i  . The ground is described by ground 2 i  . Inside 

forest, the FD region discretization was rescaled by a factor of 4, such that /120h   and the 

vertical domain size is 10700 points, chosen in order to keep the step size sufficiently small relative 

to the wavelength inside the forest. 
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Fig. 3.12. Heatmap of field strength, in decibels, for the hilly forest terrain simulation. 

Fig. 3.12 shows a beam spreading and scattering off of the hills from 0 to 1 kilometers. Fields 

diffract past the mountain at 1 kilometer, and a shadow region can be observed from 1.5 to 2 

kilometers. Field attenuation can be observed at the forest from 750 to 1000 meters. The FD solver 

thus accurately accommodates scattering features and absorbing features. The simulation 

completed in 6 days on a 3.0 GHz Intel Xeon Gold 6154 with one processor allocated. 

The second scenario is propagation over many kilometers of mountainous terrain. The 

terrain profile is extracted from geographic data from Eastern Washington. A 1 GHz vertically 

polarized transmitter 2 m above the ground oriented towards the peak at 15 km emits a Gaussian 

beam with a 6 degree HPBW. The ground is described by ground 2 i  . The domain is discretized 

with 0.501z   , 131072zN  , and 10x   meters. The FD region is discretized with / 30h 

, and with 1875 points above the terrain surface and 800 points below the terrain surface.  
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Fig. 3.13. Heatmap of field strength, in decibels, for the long-range Eastern Washington case 

In Fig. 3.13, Fields spread outwards from the transmitter and two significant points of reflection 

and scattering are observed: One at the hill around 2 km, and another on the hillside at 13 km; 

fields are reflected towards the sky. Minor reflections can also be seen from the beam sidelobe 

grazing a peak at 7.5 kilometers. Deep shadow regions are observed past the mountain peaks, 

particularly between 15 and 20 kilometers. The simulation took 13 days to execute.
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Chapter 4. Sparse Gabor Frame-Based Propagation in 3D 
 

4.1 Introduction 

This chapter generalizes the Gabor Frame-based propagator in chapter 1 from 2D to 3D. In 3D, 

the Split-Step Fourier (SSF) method marches fields from rectangular slice to rectangular slice 

through space, in an analogous manner to the 2D SSF method which marches a wavefront through 

successive 1D slices. The Gabor Transform framework introduced in chapter 1 will be generalized 

to 2D, and the SSF propagation operator will be represented in terms of a sparse Gabor-domain 

operator. Similarly, propagating fields will be described as sparse Gabor coefficient sets. 

Phase screens will be implemented in the Gabor domain, and the Radiation Boundary 

Condition (RBC) method from chapter 1 will be implemented along the walls of the 3D domain. 

RBCs will prove useful in this chapter as they absorb radiation from horizontally spreading fields, 

a problem which has complicated previous implementations of 3D solvers. 

4.2 3D Propagation with Split-Step Fourier 

This section discusses propagation in three dimensions with the conventional Split-Step Fourier 

method. The 3D notation will be introduced, the geometry will be defined, and the 3D analogs of 

2D propagation concepts will be discussed. 

Consider a transmitter mounted above the ground in three-dimensional space. The 

transmitter emits fields that spread in 3D, interact with scatterers, and refract through the 

atmosphere. Space is modeled as a rectangular prism with a rectangular coordinate system ( , , )z y x

. The transmitter produces a field excitation that is supplied along the z y  plane at the x  side 

wall of the domain, and fields are assumed to propagate in the x  direction. 

Consider some total Hertz potential vector quantity ( , , )z y xΠ  that represents a field vector 

in 3D space. The Hertz potential can be fully described by decomposing into scalar components 

( , , )ze z y x  and ( , , )zm z y x , corresponding to TEz or TMz modes respectively [5]. Let ( , , )z y x  
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represent one of the two Hertz scalar potentials ( , , )ze z y xΠ  or ( , , )zm z y xΠ , depending on the 

polarization being studied. ( , , )z y x  obeys the 3D Helmholtz equation, given by 

 
2 2 2

2

02 2

2

2

( , , ) ( , , ) ( , , )
( , , ) 0( , , )

z y x z y x z
y

y x
xk z y x

x y z
n z

  


  
   

  
, (4.1) 

where 0k  is the free space wavenumber, and ( , , )n z y x  is the refractive index. 

The domain is discretized by the vectors , ,z y x , with 0 zz zN   , 

1
2 2

y yN
y

N
yy    , and 0 xx xN    for all , ,z y x  z y x , where the step size of each 

vector is , ,z y x   . Each point in space is represented by some triplet , ,z y x  z y x . 

The field quantity is discretized by [ , , ]z y xΨ . Let a field slice [ , , ]xΨ z y  be a matrix with 

elements [ , , ]i jz y xΨ  for all ,i jz y z y . Suppose a field slice 0[ , , ]xΨ z y  is known at 0x x ; for 

example, if the fields are supplied by a transmitter. To express 0[ , , ]x xΨ z y  in terms of 

0[ , , ]xΨ z y , a Fourier-domain propagator will march fields through free space, and a spatial-

domain phase screen will be used to handle the atmospheric propagation. If waves are assumed to 

propagate in only the x  direction, then 0[ , , ]x xΨ z y  is given by 

 0 , 0[ , IFFT { [ , , ]exp( [ , ] )}exp( ), ] ( [ ] 1)
y zk kx x xx x i ik     z y x z yΨ z y Ψ k k K k k n z , (4.2) 

where 
0 ,, , ] FFT { }[ [ , , ]z y xx z yΨ k k Ψ z y , ,z yk k  are the Fourier domain variables corresponding 

to ,z y , and the wavenumber matrix is given by 2 2 2[ , ] yz y zk k k k k  xK . [ ]n z  is the refractive 

index, which is assumed to only vary in z . The subscripts of the FFT  and IFFT  operators denote 

which variables the Fourier Transforms are computed over. 

Equation (4.2) is used to repeatedly march ,[ , ]xΨ z y  from slice to slice for all xx . The 

coordinate system, as well as the layout of the vertical slices, are visualized in Fig. 4.1. 
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Fig. 4.1. Coordinate system for Split-Step Fourier in 3D. An initial wavefront defined along the 

z y  plane, and is sequentially marched from slice to slice by x  along the x  direction. The 

vertical slices show a wavefront evolving through space. 

4.3 2D Gabor Analysis 

The 2D Gabor frame is an extension of the 1D Gabor frame. While in 1D, a vector is expressed as 

weighted sum of shifted and modulated window functions, in 2D a matrix is expressed as a 

weighted sum of shifted and modulated window matrices. There are now two shifting and 

modulation parameters, corresponding to shifts and modulations in z  and y . 

A 2D Gabor window matrix can be constructed by computing the outer product of two 1D 

Gabor windows [65] as 

 ,

T

1, 2, 1, 2 1, 1 2 2[ , ] [ ] [ ]n n m m n m n mG z y g z g y . (4.3) 

The spatial shift indices in z  and y  are 1 1 1[0,..., 1]n N n  and 2 2 2[0,..., 1]n N n  

respectively, the frequency modulations z  and y  are 1 1 1[0,..., 1]m M m  and 

2 22 [0,..., 1]m M m  respectively, and the window widths in z  and y  are set to 
1 1pN M  and 

2 2pN M  respectively. Two examples of 2D Gabor window functions are shown in Fig. 4.2. 
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The dual window functions, an example of which is shown in Fig. 4.3, are constructed as outer 

products of 2D dual window functions, given by 

 1, 2, 1, 2 1, 1 2, 2[ , ] [ ] [ ]T

n n m m n m n mG z y g z g y . (4.4) 

 

Fig. 4.2. Visualization of absolute value of real part of 2D Gabor window functions 

1, 2, 1, 2[ , ]n n m m z yG , with 
1 2 32p pN N  , and with 1 2 1 2( , , , ) (0,0,0,0)n n m m   (left) and 

1 2 1 2( , , , ) (0,0,4,2)n n m m   (right). 

 

Fig. 4.3. 3D dual window function 1, 2, 1, 2[ , ]n n m m z yG , with 
1 2 32p pN N   and 

1 2 1 2( , , , ) (0,0,0,0)n n m m  . 

The matrix is written in terms of Gabor window functions as 
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1 2 1 2

1 2 21

1,

,

2, 1, 2 1, 2, 1

,

,

, ,

2 ][ , ] [ ,
N M

n

N M

n n m m n n m m

m mn

  Ψ z y G z y . (4.5) 

Equation (4.5) is called an Inverse 2D Gabor Transform, where each 
1, 2, 1, 2n n m m  is a Gabor 

coefficient. A Gabor coefficient can be computed by performing an element-wise multiplication 

between 1, 2, 1, 2[ , ]n n m mG z y  and [ , ]Ψ z y , and then summing together all elements of the resulting 

matrix. This operation can be written in terms of a vector-matrix-vector multiplication as 

 1, 2, 1, 2 1, 2, 2

T

1[ ] [ ][ , ]n n m m n m n m  g z Ψ z y g y . (4.6) 

The collection of all Gabor coefficients 
1, 2, 1, 2n n m m  is denoted as a Gabor coefficient set 

1 2 1 2, , , ][Φ n n m m . 

In future sections, Gabor Transforms between a spatial domain matrix and a Gabor 

coefficient set will be given by the notation 

 1 2 1 2 2D, , , ] GT { }[ [ , ]Φ n n m m Ψ z y , (4.7) 

 2D 1 2 1 2[ , ] [ }IGT { , , , ]Ψ z y Φ n n m m . (4.8) 

The computation of Gabor coefficients can be sped up by using Fourier Transforms. This is useful 

as not only a means of making some derivations more straightforward, but also because 

implemented Gabor Transform code can take advantage of optimized FFT libraries. 

Let the Gabor coefficient set 1 2 1 2, , , ][Φ n n m m  be rewritten as an “outer” spatial data 

structure 1 2 ][ ,space
Φ n n  and an “inner”  frequency data structure 

1 2 1 2, , ][n n

freq
Φ m m , such that 

1 21 2 1 2 1 2 , 1 2, , , ] , ] , ][ [ [space freq

n nn nn n Φ m m Φ Φ m m . Each element of 1 2 ][ ,space
Φ n n  can be 

assembled by multiplying unmodulated 2D Gabor windows with localized Fourier Transforms of 

the function 
1 2 1 2, ,[ , ]n n n nΨ z y . The Fourier Transform is performed over the spatial support of each 

Gabor window function, given by 
1 2 1 2 1 2 1 2, , , , , }( ) { , : [ , ], 0n n n n n n m mz y z y   z y z y G , which is of 

size 
1 2p pN N . The computation in terms of Fourier Transforms is hence 

 
1 2 1 2 1 2 1 2 1 2 1 21 2 , , , , ,0,0, , ,, ] FFT { [ ]}[ [ , ] ,freq

z y n n n n n n n nn n n nΦ m m Ψ z y G z y , (4.9) 
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where the symbol  denotes element-wise multiplication of matrices. Likewise, the procedure 

for reconstructing [ , ]Ψ z y  is given by 

 
1 2

1 2 1 2 1 2

1 2

, 1, 2,0 2

,

,

,0 , 1,[ , F] {[ , ] [ , ] IF T [ , ]}
N

freq

n n n n m m

n

N

n n

n

 Ψ z y s z y G z y Φ m m , (4.10) 

where the indicator function  1 2 1 2

1 2

, ,
,

1,
[ , ]

0, otherwise

,n n n n
n n

z y
z y

 


z y
s . 

4.4 3D Propagation in the Gabor Domain 

In this section, the Gabor framework for propagating fields in 3D is introduced. Fields will be 

decomposed into beamlets with precomputed propagation characteristics, and the beamlets will be 

marched in the Gabor domain. 

The marching operator can be represented by a Gabor propagator in a similar way to prior 

sections on 2D. The field slice 0 ][ , , xΨ z y  is represented in the Gabor domain by 

 1 2 1 2 0 2D 0[ , , , , ] GT { }[ , , ]x xΦ n n m m Ψ z y . (4.11) 

The notation 
1 2 1 2, , , 0[ ]n n m m x  will sometimes be used to denote an individual element of the matrix 

1 2 1 2 0[ , , , , ]xΦ n n m m . 

For 3D propagation, a beamlet 
1 2 1 2, ,, [ , ],s f fs xB z y  is defined as the Split-Step Fourier solution 

to a problem with an initial excitation at 0x x  of a 2D Gabor dual window function, 

 
1 2 1 2 1 2 1 2, , 0 ,, ,,[ , ] [ ], ,fs ss f s f fx B z y G z y . (4.12) 

The propagation matrix set, similar to the 2D case, is assembled by marching (4.12) forward by 

x  to form 
1 2 1 2,, , 0[ , ],s f fs x xB z y for all beamlet spatial shifts and frequency modulations 

1 2 1 2, , ,s s f f  

 
1 2 1 21 2 1 2 1 2 1 2 2D , , , , ,, , , , , , , ] GT {IFFT {FFT { [ , ]} }}[

y z

x

k k y z s f f

i

ss s f f e


 xK
P n n m m G z y . (4.13) 

The 1 2 1 2, , , )( s f fs  element of the propagation matrix set is a Gabor coefficient set for a marched 

beamlet, where the beamlet has spatial and frequency modulations 1 2 1 2, , , )( s f fs . 
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In order to propagate a wavefront 0 ][ , , xΨ z y , its Gabor coefficient matrix is obtained as per (4.11)

; the coefficient matrix of the field slice is be written as 1 2 1 2 0[ , , , , ]xΦ s s f f . For each element in the 

matrix 1 2 1 2 0[ , , , , ]xΦ s s f f , the propagation matrix set submatrix at 1 2 1 2, , , )( s f fs  is added to the 

resultant fields, weighted by 
1 2 1 2, , , 0[ ]s s f f x . This operation is represented mathematically as 

 
1 2 1 2

1 2 1 2, , ,

21 2 1 2 0 1 2 1 2 1 1 2 , , , 0[ , , , , ] , , , , , , , ] [ ][ s

f

s f f

s s f

x ss f xfx   Φ n n m m P n n m m . (4.14) 

While the operator (4.14) is exact, it is extremely costly in memory. The propagation matrix P  is 

an 8-dimensional structure; it is a 4-dimensional composition of Gabor representations of marched 

fields. In addition to memory costs, computing marched beamlets for every single index of 

1 2 1 2, , ,s f fs  is prohibitively slow; it requires a total of 
211 2 p pN NN N    marches. In order to 

implement a practical Gabor-domain 3D solver, efforts must be made to eliminate redundancies 

to reduce the number of stored dimensions of the propagation matrix. 

The two dimensions representing spatial shifts can be easily eliminated. Provided the 

convention ( )( )

, [[ ]] i mb n

m

a

n na e  z
g z g z  is used, the 1 2,s s  elements of P  can be simplified to 

frequency shifts, given by 

 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2[ [ ], , , , , , , ] ,0, , , ,0 , ,s f f n n m m f f n s n ss mm  P P . (4.15) 

With (4.15), fields need to be marched only 
21p pN N  times in order to populate the propagation 

matrix. In order to eliminate one more dimension, some modification is needed to the SSF 

propagation operator (4.2). 

The steps that follow reduce the computational cost of assembling P  in two ways. The 

first is to facilitate shift-invariance in 1f  or 2f . The second, which aids the first, is to split the 

propagator into independent y  and z  marching steps, rather than mixed ,y z  marching. This 

means that not only can the transverse Gabor modulation term can be decoupled from the 

propagation matrix in each independent step, thus achieving shift-invariance in one frequency 

dimensions, but also the same propagator can be recycled between the y  and z  directions, thus 

requiring less computational overhead in building the propagation matrix set. 
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Recall that 2 2 2exp( ) exp( )[ , ]y y zzki k kx i k xk     xK . This term can not be split into a 

product of a yk  term and a zk  term. However, if the parabolic approximation is invoked, such a 

splitting becomes possible. The square root operator is approximated by 

 

2 22 2
2 2 2

2 2 2 2
exp( ) exp( ) exp( (1 ) )

2
1

2

y y z
y

z
z

k k
i x ik x ik

k

k

k
xk k k

k k k
            . (4.16) 

The right-hand side of (4.16) can be rewritten as 

 

2 22 2

2 2 2 2

1 1
exp( (1 ) ) exp( ( ) ) exp( ( ) )

2 2 22 2 2

zy yz

k

k kk k
ik x ik x ik x

k k k
           . (4.17) 

Let the partial propagator ][ ikρ  be defined by 

 
2

2

1
[ exp( ( ) )]

2 2

i
i

k
k ik x

k
   ρ , (4.18) 

so that in free space, the SSF propagator (4.2) can be approximated as 

 
0 , , 0[ , ] IFFT {FFT { } ] ]}, [ , , [ [

y zk k zy yzx x x Ψ z y Ψ z y ρ k ρ k . (4.19) 

Note that with the yk  and zk  terms now being independent, the Fourier transforms in(4.19) can 

be split into Fourier transforms in separate directions , zz k  and , yy k . The split propagator is given 

by 

 0aux

aux

0

0 0

, [ , [

[ }

[ , ] IFFT {FFT { , ]} ]}

, IFFT {FFT { }, ] [ , ]] [,
z

y

zk z

k y y

x x

x x x



 

Ψ z y Ψ z y ρ k

Ψ z y Ψ z y ρ k
. (4.20) 

If the domain is square such that y z  and thus z yk k , then the two propagation operators in 

(4.20) are identical. If a propagation matrix is built to represent the partial propagator ][ ikρ , then 

the propagation matrix set can be recycled for both steps in (4.20). 

The utilization of the propagation matrix set for the partial propagator ][ ikρ  follows. 

Consider the propagation matrix zP  associated with the partial marching in the z  direction in 

(4.20), given by 
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21 1 21 2 1 2 1 2 1 2 2D , ,[ , , , , , , , ] GT {IFFT {FFT { [ ] [ ]} ]}}[

z zz s f f zk ss f fs P n n m m g y g z ρ k . (4.21) 

Recalling the simplification (4.15), it is only necessary to write (4.21) for 21 0s s  , so that 

 
21 1 21 2 1 2 1 2 2D , ,[0,0, , , , , , ] GT {IFFT {FFT { [ ] [ ]} ]}}[

z fz sz k f s zf f P n n m m g y g z ρ k . (4.22) 

The Gabor window function can be expanded as 
2

2
0, 0,0

2
[ ] [ ]exp( )

z

f

p

f y
y y i

N


g g . Substituting into 

(4.22) yields 

 
2 2

2

1 2 1 2 1 2

2
2D 0,0 ,

[0,0, , , , , , ]
2

GT {IFFT {FFT { [ ] [ ]exp( )} ]}}[
z

z

k z

p

z fs

f
f f

i
N


P n n m m

y
g y g z ρ k . (4.23) 

The exponential operator can be pulled out of the Fourier transform, as it has no z  dependence, 

so that 

 
2 2

2

1 2 1 2 1 2

2
2D 0,0 ,

[0,0, , , , , , ]
2

GT {exp( )IFFT {FFT { [ ] [ ]} ]}}[
z

z

k f z

p

z s

f f

i
f

N


P n n m m

y
g y g z ρ k  (4.24) 

By using (4.24) in conjunction with properties of Gabor transforms,  

 1 2 1 2 1 2 1 1 2 1 2 2[0,0, , , , , , ] [0,0, ,0, , , , ]z zf f f f P n n m m P n n m m  (4.25) 

Equation (4.25) shows that it is only necessary to precompute the propagation matrix 

1 1 2 1 2[0,0, ,0, , , , ]z fP n n m m , and all other elements 1 2 1 2 1 2 1 2, , , , , , , ][z s s f fP n n m m  can be expressed 

as shifts of it at runtime. 

The y  propagation set 
1 2 1 2 1 2 1 2, , , , , , , ][y s s f fP n n m m  for the partial propagator ][ yρ k  can 

be derived in the same manner. If the domain is square, it is unnecessary to precompute the y  

propagation set, as it can be expressed as a transpose of the z  propagation matrix set as 

 
21 2 1 2 1 2 1 2 1 12 1 2 1 2, , , , , , , ] , , , , , , , ][ [y zs f f s fs fsP n n m m P n n m m . (4.26) 

It is therefore only necessary to perform 
1pN  different marches during precomputation, and the 

other elements of the propagation matrix can be determined from shifts and transposes at runtime. 

4.5 Sparsification in 3D 
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Gabor representations of 3D field slices can be sparsified to a very high degree. Sparsification is 

achieved by deleting coefficients in the Gabor coefficient set 1 2 1 2, , , , ][ xΦ n n m m  that fall below a 

certain threshold. 

In implementation, it is most practical to only sparsify the “inner” frequency data structures 

1 2 1 2, , , ][f q

n n x

re
Φ m m  of the Gabor coefficient set, so that the “outer” spatial data structure 

1 2 ,[ , ]space xΦ n n  is stored as a dense matrix. 

Sparsification via simple thresholding is performed through the operation 

 1 2 1 21 2 1 2

1 2 1 2

1 2 1 2

, , , 1 2 1 2 1, , ,
, , ,

, , , 1 2 1 2 1

] []
]

] [

[ , , , , ][ ,
[

0, [ , , , , ]

n n m mn n m m
n n m m

n n m m

x

x

xx
x

x

 


 

  
  

  

Φ n n m m

Φ n n m m
. (4.27) 

The norm 1 2 1 2 1
, , , ][ , xΦ n n m m  is obtained by summing together all elements, for all 

1 2 1 2 1 2 1 2( ), , , ) , ,( ,n m mn  n n m m . 

For optimally small storage, the sparsification operation (4.27) should be applied after any 

propagation operation; if the simple Gabor propagator (4.14) is used, fields should be sparsified 

once for every step in x . If the split propagation method (4.20) is used, an sparsification step is be 

required, albeit with a weaker tolerance, in between the z  and y  propagation steps of the split 

propagator. This is such that the second step of the split propagator will still operate over a 

sufficiently sparse matrix. 

4.6 Radiation Boundary Conditions in 3D 

The implementation of RBCs in 3D mimics the 2D implementation. Fields are marched on an 

auxiliary domain that is arbitrarily large, and excited Gabor coefficients outside of the domain are 

discarded. Let 
1 2 1 2

aux

, , , 0 ][n n m m x x   be the result of marching 
1 2 1 2, , , 0 ][n n m m x  forward by one step on 

an arbitrarily large domain. The formula for truncating Gabor coefficients outside of the domain 

is 

 1 2 1 2

1 2 1 2

aux

, , , 0 1
, , ,

2
0

[ , 1 1,1 1
[

o,

]
]

therwise0
n n m m

n n m m

n N n Nx x
x x




       
  







. (4.28) 
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While the typical use-case of this is upper atmosphere truncation on the upper x z  wall, in 3D 

the RBCs can be implemented on the side x y  walls as well, preventing sideways-moving 

radiation from reflecting back into the domain. This means that the width of the domain in y  only 

needs to be enough to encapsulate significant environmental features and a thin absorbing layer to 

compensate for the relative weakness of Gabor RBCs at shallow incidence.  

4.7 Gabor-Domain Phase Screens in 3D 

The method for mixed-domain phase screens in 2D can be naturally carried forward to 3D. If the 

refractive index profile is piecewise linear, then if there are sN  unique slopes, then 1sN   

propagation matrix sets are generated; the first sN  matrix sets are marched under a refractive index 

profile with one of the unique slopes. The extra 1sN  th matrix comes from the splitting of 

propagation directions. If the split propagation method is used, some redundancy is lost as the 

phase screen only operates on zk  wavenumbers; yk  wavenumbers march through effectively free 

space. Therefore, if the phase screening terms are to be built into the propagation matrix set, an 

extra propagation matrix set must be generated for the free space case and used to march yk  

wavenumbers. The operation of building the phase screening terms into the propagation matrix 

set, for a linear atmosphere with slope  , is given by 

 
1

1 2 1 2 1 2

2D 0, 0,0

[0
( }

,0, , , , , , ]
GT {exp( )IFF {1) T FFT { [ ] [ ]} ]}[
z

kz fz z

f f
ik x



 
P n n m m

z g z g y ρ k
. (4.29) 

In the 2D case, corners in the refractive index profile were handled by local Inverse/Forward Gabor 

Transforms; an inverse transform would be computed about a small set of spatial bins, the phase 

screen would be applied in the spatial domain, and a local forward transform would be computed. 

In 3D, this same process applies; all spatial indices 1 2, invn n   corresponding to corners in the 

refractive index profile are locally inversely transformed to the spatial domain and processed 

spatially. Much like 2D, a performance improvement is realized by, rather than computing a local 

Inverse/Forward Gabor Transform over all spatial bins, computing IFFTs/FFTs individually over 

the frequency content at each spatial bin. This is executed by constructing a diagonal operator 

1 2,n nD  defined such that  

 0

1 2 1 2

( ) ( ) ( ) ( 1) [ ]( )
[ , ] , ][n nni x na z n n

n n n

k

ne
     


z n z

Dψ z y ψ z y , (4.30) 
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which operates over the vectors 
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, ( 1) , ,
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

z z

y y
. (4.31) 

Then for all 1 2,n n , 
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where  
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4.8 Numerical Results 

The 3D solver is first validated for a simple beam propagating through refractive atmosphere and 

for a beam propagating through an ocean duct. The effects of sparsification in 3D are then studied, 

followed by a characterization of 3d Radiation Boundary Conditions. 

A. Validation 

The first test is a simple beam propagation scenario, synthesized to demonstrate the best-

case utility of the solver for simple wave profiles in linear atmospheres. A Gaussian beam of width 

25 meters, centered at ( , ) (936,0)z y   meters at 1 GHz, is launched through an atmosphere 

defined as an ionosphere with Earth curvature correction. The discretization is 3 / 4y z     , 

300x   meters, 8192z yN N  , 1024
x yp pN N  . Gabor RBCs are active, paired with an 

absorbing layer realized as an error function on a pedestal of width 368 , tuned such that radiation 

incident at 0.5 degrees from horizontal is attenuated by 200 dB. The results are visualized in Fig. 

4.4, Fig. 4.5, and Fig. 4.6. 

Since the atmospheric profile is linear, the phase screen can be applied entirely in the Gabor 

domain, leading to a significant improvement in performance. 
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Fig. 4.4. Heatmap of the field strength (in dB) of a Gaussian beam propagating through a simple 

linear atmosphere. 

 

Fig. 4.5. Percent error of each slice in x  for a Gaussian beam propagating through a simple linear 

atmosphere. 
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Fig. 4.6. Number of nonzero field coefficients at each slice in x , for a Gaussian beam propagating 

through a simple linear atmosphere. 

Solver Type Average Step Time (ms) Peak Memory Usage (# 

points) 

Split-Step Fourier 14400 67108864 

Gabor 6545 3801 

Table 4.1. Comparison of CPU time and number of stored points for the simulation in Fig. 4.4 on 

a 3.0 GHz Intel Xeon Gold 6154 with one processor allocated. 

Fig. 4.4 shows that the Gaussian beam smoothly deflects upwards as it propagates through space, 

as expected from a linear atmospheric profile. Fig. 4.5 and Fig. 4.6 show that the 3D Gabor solver 

represents propagating fields with fewer than 4000 stored coefficients and less than 1% error for a 

28192 819  domain; this amounts to a 99.99% sparsification. As shown in Table 4.1, Gabor solver 

marches fields and applies the phase screen at 2.2 times the speed of the Split-Step Fourier solver. 

B. Long-Range Propagation 

The next scenario is a more realistic case-study: A Gaussian beam propagating through an 

ocean duct. A Gaussian beam of width 25 meters, centered at ( , ) (926,0)z y   meters at 1 GHz, is 

launched through an atmosphere defined as an ionosphere with Earth curvature correction. The 

discretization is 3 / 4y z     , 300x   meters, 8192z yN N  , 1024
x yp pN N  . Gabor 
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RBCs are active, paired with an absorbing layer realized as an error function on a pedestal of width 

368 , tuned such that radiation incident at 0.5 degrees from horizontal is attenuated by 200 dB. 

The results are visualized in Fig. 4.7, Fig. 4.8, and Fig. 4.9. 

The ocean duct is a trilinear profile with two unique slopes. The boundary condition of the 

ground is implemented as an image of the domain above the ground with reflection coefficient −1, 

thereby increasing the number of unique slopes in the computational problem to four. There are a 

total of five “corners” in the refractive index profile that must be locally processed in the spatial 

domain. 

 

Fig. 4.7. Heatmap of the field strength (in dB) of a Gaussian beam propagating through a trilinear 

duct. 
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Fig. 4.8. Percent error of each slice in x  for a Gaussian beam propagating through a trilinear duct. 

 

Fig. 4.9. Number of nonzero field coefficients at each slice in x , for a Gaussian beam propagating 

through a trilinear duct.  
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Solver Type Average Step Time (ms) Peak Memory Usage (# 

points) 

Split-Step Fourier 12410 67108864 

Gabor 10340 6572 

Table 4.2. Comparison of CPU time and number of stored points for the simulation in Fig. 4.7 on 

a 3.0 GHz Intel Xeon Gold 6154 with one processor allocated. 

Fig. 4.7 shows a Gaussian beam deflecting slightly upwards before leveling out, in accordance 

with energy getting trapped inside the duct. It can be seen in Fig. 4.8 and Fig. 4.9 that this scenario 

is represented efficiently within the Gabor framework; fewer than 6000 coefficients are stored with 

less than 1% error, which on a 28192 819  domain means that the scenario has 99.99% sparsity. 

As shown in Table 4.2, the Gabor method performs 20% faster than Split-Step Fourier; the reduced 

performance relative to the simple linear atmosphere case is attributed to the additional processing 

needed for corners in the atmosphere.  

C. Radiation Boundary Conditions 

The 3D implementation of RBCs is characterized in the next experiment. The efficacy of 

the RBCs is measured through the reflection coefficient; a Gaussian beam is launched through free 

space at a side wall of the domain, and the reflected amplitude is compared with the incident 

amplitude. 

Gaussian beams are launched at the y  side wall of the domain, at which there is an RBC. 

The beams have a frequency of 1 GHz, have a beam waist of 10 m, and are centered at 

, 12512 5z y    . The domain is discretized with z y     , 50x   m, 1024z yN N 

, with Gabor window widths 128
x yp pN N  . 

Two cases are evaluated. The first case is strictly a Gabor-domain RBC. In the second case, 

two boundary conditions are used simultaneously: Gabor RBCs, and an absorbing layer. The 

absorbing layer is applied locally in the spatial domain. The layer is defined as an error function 

on a pedestal of width 204 , tuned such that radiation incident at 0.5 degrees from horizontal is 

attenuated by 200 dB. The setup is visualized in Fig. 4.10 and Fig. 4.11, and the results are 

visualized in Fig. 4.12. 
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Fig. 4.10. Heatmap showing field strength for one realization of the experiment to characterize 

Gabor RBCs (left) and Gabor RBCs plus an absorbing layer (right), for a steep angle of incidence 

on the radiation surface. 

 

Fig. 4.11. Heatmap showing field strength for one realization of the experiment to characterize 

Gabor RBCs (left) and Gabor RBCs plus an absorbing layer (right), for a shallow angle of 

incidence on the radiation surface. 
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Fig. 4.12. Plot of the attenuation of two different boundary conditions versus incident angle: Gabor 

RBCs (blue), and Gabor RBCs with an added absorbing layer (orange). 

The RBCs in 3D work perform similarly to the 2D case. Incident radiation at shallow angles is 

reflected strongly, but at steeper angles almost all incident radiation is absorbed. Since absorbing 

layers attenuate well for shallow angles, a thin absorbing layer helps compensate for the 

shortcomings of an RBC; a scheme using both Gabor RBCs and an absorbing layer achieves wide-

angle attenuation. 

D. Sparsity Effects 

The last numerical experiment is a study of the effects of sparsification on accuracy. A Gaussian 

beam is marched through free space and is thresholded at different levels, and the associated error 

trends are compared. The thresholding is applied to both the propagation matrix set and the stored 

fields. The error is computed by comparing the 2-norm of the sparsified field at each location in 

x  with that of a field with no sparsification. 

The sparsified Gaussian beam has a frequency of 300 MHz and with beam waist 50 m, 

centered in the middle of the domain. The domain is discretized with z y     , 19x   m, and 

the Gabor window widths are 64
z yp pN N  . Gabor RBCs are active. One realization of the 

problem setup is shown in Fig. 4.13, and the results are shown in Fig. 4.14. 
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Fig. 4.13. Heatmap of the field strength of one realization of the sparsification study. 

 

Fig. 4.14. Error induced by sparsification of a Gaussian beam at each vertical slice. Each line 

represents a different level of sparsification. 
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Fig. 4.14 shows that increasing sparsification increases error. It can be seen that sparsification 

levels above 95% are extremely easy to achieve while maintaining low error. The error increases 

with distance, so care must be taken in problem definitions such that the error remains low over 

long ranges.
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Chapter 5. Terrain Modeling in 3D 
5.1 Introduction 

Terrain modeling is critical for a robust 3D solver. There is strong interest in the description of 

propagation over terrain, and while there is a robust array of 2D solvers, they are significantly 

limited in their accuracy. 2D models neglect the effects of objects oriented such that scattered 

fields are perpendicular to the vertical and range direction. These effects can by accurately 

described by using a 3D terrain model; however, while 3D terrain models exist for Parabolic Wave 

Equation solvers, their scalability is suboptimal due to the resources required to describe structured 

fields in the atmosphere above the terrain. 

This chapter adds a terrain model to the 3D solver developed in chapter 4. The Gabor 

frame-based solver will be integrated with an Impedance Boundary Condition (IBC). In a manner 

inspired by the hybrid SSF-FD solver in chapter 3, the computational domain is partitioned into 

an upper region and a lower region. Fields in the upper region are marched with the sparse Gabor 

solver, and fields in the lower region are marched with a SSF solver augmented with IBCs. Local 

Inverse Gabor Transforms are used to elegantly hybridize the solvers. 

5.2 Impedance Boundary Conditions 

This section describes how fields can be marched under an Impedance Boundary Condition using 

the 3D Split-Step Fourier framework. IBCs enable the reflection of fields from hard surfaces that 

have a specified permittivity. This section largely recounts the work of [54], which implemented 

IBCs for propagation over forest. 

Consider a 3D field profile 0[ , , ]xΨ z y  over terrain that has permittivity terrain . The terrain 

elevation at each point 0( , )y x  is given by terrain 0[ , ]z y x h . At the terrain interface, 0[ , , ]xΨ z y  

obeys the Impedance Boundary Condition  
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The propagation equation through weakly inhomogeneous space, as explored in the previous 

chapter, is given by 

 0 , 0[ , IFFT { [ , , ]exp( [ , ] )}exp( ), ] ( [ ] 1)
y zk kx x xx x i ik     z y x z yΨ z y Ψ k k K k k n z . (5.2) 

In order to march fields over terrain, equation (5.2) will be modified to accommodate IBCs. For 

continuous scalar field quantities TE  and TM  for TE and TM polarizations respectively, the 

IBCs are 
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First, the Fourier Transform of the field profile 0[ , , ]xΨ z y  subject to IBCs is computed as 
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where )( zk  is the terrain reflection coefficient as a function of the incident wavenumber zk . 

The reflection coefficient in TE and TM modes is given by 
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where 1zk  is the z  component of the wavenumber inside the terrain, and 1k  is the wavenumber 

below the terrain interface. 
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Equation (5.4) can be written in terms of a Fast Fourier Transform by splitting the field 

profile into even and odd components with respect to terrainz , denoted by 0[ , , ]e z y xΨ  and 

0[ , , ]o z y xΨ  respectively. By using the property 

 0
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(5.4) can be rewritten as 

 0 0 0
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z z
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k k
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Ψ Ψ Ψ , (5.7) 

where 
0[ , , ]e z yk k xΨ  and 

0[ , , ]zo yk k xΨ  are the Fast Fourier Transforms of 0[ , , ]e z y xΨ  and 

0[ , , ]o z y xΨ  respectively. After evaluating (5.7), the resultant 
0[ , , ]z yk k xΨ  can be substituted into 

the SSF propagator (5.2). Thus, in order to march fields subject to an IBC, (5.7) is invoked in the 

SSF marching step in place of the usual FFT computations of spatial-domain field slices. 

5.3 Hybridization of Gabor Propagation and IBCs 

The 3D Gabor propagation scheme outlined in the previous chapter can be elegantly hybridized 

with the IBC-augmented SSF method by using local Inverse Gabor Transforms. Fields in most of 

the domain are marched as usual with the Gabor framework, however fields about the surface are 

locally transformed to the spatial domain and marched with the propagator derived in section 5.2. 

This can be visualized as a partitioning of the domain into a “Gabor region” and an “IBC 

region”, shown in Fig. 5.1. 
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Fig. 5.1. Partitioning of the domain into the Gabor region, where fields are marched with a 3D 

Gabor propagator, and the IBC region, where fields are marched with 3D Split-Step Fourier 

augmented with Impedance Boundary Conditions. 

Consider a field profile 0[ , , ]xΨ z y  with the corresponding Gabor coefficient set 

1 2 1 2 0, , , , ][ xΦ n n m m  that is to be marched one step forward from 0x x  to 0x xx   subject to 

IBCs. Consider a set of Gabor indices terrain 1n n  about the surface of the terrain, such that the 

spatial support of terrainn  encloses the terrain profile over all y  at 0x x . In other words, the 

connected set terrainn  is chosen such that 
11

0[ [ , ]] 0max
terrain

n
yn

y x


 n
s h   and 

11
0[ [ , ]] 0min

terrain
n

yn
y x


 n

s h , where the indicator function 
1
[ ]n zs  is defined by (0.27). 

The subset of the Gabor plane for 1 terrainn n , represented by 
terrain 2 1 2 0, , , , ][ c xΦn n m m , is 

marched as per (4.20) to produce 
Gabor terrain 2 1 2 0, , , , ][ c x xΦ n n m m . For the section 1 terrainn n , a 

local Inverse Gabor Transform is computed of the restricted function terrain 2 1 2 0, , , , ][ xΦ n n m m  to 

produce a local spatial domain signal IBC 0IBC[ , , ]xΨ z y , which is to be marched forward to 

produce IBC 0IBC[ , , ]xx Ψ z y  with an IBC propagator defined in section 5.2. 

The vector IBCz  is slightly bigger than the mere spatial analog of terrainn ; IBCz  is made 

large enough that the propagated local fields IBC 0IBC[ , , ]xx Ψ z y  will not reach the domain 

boundaries. An enlarged subset IBCn  is defined such that terrain IBC 1 n n n , and  IBCz  is 
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correspondingly defined to span the spatial analog of IBCn ; in other words, 

IBC IBC{ : : [ ] 0}
ii nz n z  z n s . Typically, it suffices to let IBCn  be the union of terrainn  and its 

immediate top and bottom neighbors within the vector n . 

Once IBC 0IBC[ , , ]xx Ψ z y  is obtained, a local Gabor Transform is computed over IBCz  

to produce IBC IBC 2 1 2 0, , , , ][ xx Φ n n m m . The total marched Gabor-domain fields are then 

described as the sum between the IBC fields from the IBC region, and the Gabor fields from the 

Gabor region, represented as 
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. (5.8) 

Equation (5.8) is used to march a Gabor-domain field through space subject to IBCs. 

5.4 Numerical Results 

A. Validation of Reflection Coefficient 

The first numerical study is a comparison of the simulated versus theoretical reflection 

coefficient. Since IBCs are expressed in terms of reflection coefficients, a solver that accurately 

reproduces reflection coefficients can be judged to correctly implement IBCs.  

 A 600 MHz Gaussian beam with a 15 m waist is launched through free space towards a 

flat surface with permittivity terrain 1.1 0.1i  . Thirteen angles of incidence are evaluated from 3 

degrees to 15 degrees from horizontal, and for each angle, two separate runs are executed in TE 

and TM incidence. The Gabor parameters are 32
z yp pN N  , and terrainn  is defined such that the 

support of 
11

[ ]
terrainn n z

 n
s  spans 0 0m[ , ] 2 [ , ] 2max ax

z zp p
y y

y x N z y x N   h h . The domain is 

discretized with 35x   m, 0.6z y     , and 1024z yN N  . 

 A reference scenario is constructed in which there are no IBCs; the Gaussian beam is 

marched through free space. This reference scenario is used to evaluate the reflection coefficient; 

the reflection coefficient is defined as the ratio of the magnitude of the reflected beam subject to 

IBCs to the magnitude of the free-space beam. The reflection coefficient is compared with the 

theoretical Fresnel reflection coefficient in Fig. 5.2. 
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Fig. 5.2. Simulated reflection coefficient versus theoretical Fresnel reflection coefficient at 

different incident angles for TM incidence (top) and TE incidence (bottom) 

The hybrid Gabor-IBC solver shows close agreement with the Fresnel reflection coefficient over 

all studied incident angles for both TE and TM incidence. It follows that the solver accurately 

marches fields subject to an Impedance Boundary Condition. 
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B. Reflection from Rough Surface 

The next study to be performed is scattering from a rough surface. A 300 MHz Gaussian beam 

with a 10 m waist and TM polarization is launched at a periodic sinusoidal terrain with 20 m 

amplitude, 0.25 m period in x , and 250 m period in y . The terrain has permittivity 

terrain 3 4i  . The Gabor parameters are 64
z yp pN N  , and terrainn  is defined such that 

11

[ ] 0
terrainn n z


 n

s  for 0 0m[ , ] 2 [ , ] 2max ax
z zp p

y y
y x N z y x N   h h . The domain is discretized 

with 25x   m, 0.501z y     , and 1024z yN N  . Propagating fields are sparsified and 

are compared to a case where SSF and IBCs are used to march over the entire domain. The 

scattering profile is shown in Fig. 5.3, the sparsity is shown in Fig. 5.4, and the error with respect 

to full SSF and IBCs is shown in Fig. 5.5. 

 

Fig. 5.3. Heatmap of field strength (dB) of a Gaussian beam scattering off of a rough surface. 
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Fig. 5.4. Number of stored Gabor coefficients at each location in x  in the rough surface scattering 

problem. 

 

Fig. 5.5. Error of fields at each location in x , measured as the square of the difference in 

magnitudes between the hybrid Gabor-IBC fields, and the fields solved with a full SSF solver with 

IBCs. 
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In Fig. 5.3, fields reach the surface and then scatter off in a diffuse pattern; a peak is observed in 

the spectral direction and field strength tapers off for scattering angles far from the spectral 

direction. This behavior is consistent with scattering from rough surfaces; this indicates that the 

staircasing model is reasonably able to capture basic terrain features. Fig. 5.4 and Fig. 5.5 show 

that the Gabor-domain fields are sparsified to 80% while incurring 2.5% maximum error; when 

the storage of the IBC region is factored in, the problem is compressed by 30%. 

The above experiment was repeated for many different compression thresholds in order to 

gauge the relationship between sparsity and error. The results are shown in Fig. 5.6. 

 

Fig. 5.6. Error of fields at each location in x  for the rough surface experiment shown in fig. 5.4; 

each line is for a different compression level. 

Fig. 5.6 shows that the error is controllable with respect to sparsity; as in previous chapters, error 

grows with sparsity and there are no signs of instability.  

C. Propagation over Terrain 

The solver is tested for a realistic scenario of long-range propagation over terrain. A 1 GHz TM-

polarized Gaussian beam with a 4 m waist is launched over mountainous 3D terrain extracted from 

satellite data. The terrain has permittivity terrain 3 4i  , and the atmosphere is a trilinear duct as 

used in prior chapters. The Gabor parameters are 512
z yp pN N  , and terrainn  is defined such that 
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11

[ ] 0
terrainn n z


 n

s  for 0 0m[ , ] 2 [ , ] 2max ax
z zp p

y y
y x N z y x N   h h . The domain is discretized 

with 25x   m, 3 / 4z y     , and 16384z yN N  . The results are shown in Fig. 5.7, Fig. 

5.8, and Fig. 5.9. 

 

Fig. 5.7. Heatmap of field strength (dB) of propagation over 3D terrain. 
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Fig. 5.8. Number of stored Gabor coefficients at each location in x  in the 3D terrain problem. 

 

Fig. 5.9. Error of fields at each location in x , measured as the square of the difference in 

magnitudes between the hybrid Gabor-IBC fields, and the fields solved with a full SSF solver with 

IBCs. 
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Fig. 5.7 shows a beam marching towards a hilltop at 0.6 km and then scattering from it; scattered 

waves can be observed in the upper region of the domain. Past the mountain at 0.6 km, a diffraction 

pattern is observed, and steep shadows are seen behind each of the peaks in the terrain profile. This 

indicates that the IBC-staircasing model can reasonably describe terrain. Fig. 5.8 and Fig. 5.9 show 

that the Gabor-domain fields can be compressed by 99.98% while introducing only 2% error. 

When the IBC region is factored in, the total effective compression is 93%, showing a substantial 

reduction in stored information over the full SSF model.
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Chapter 6. Conclusion 

6.1 Research Contributions 

This thesis presented fast methods for propagating fields over long ranges in rural environments. 

A Gabor-Frame-based solver was introduced that replaced an expensive Fourier-domain Split-

Step Fourier propagator with a sparse Gabor-domain propagator. Representations of propagating 

fields were sparsified, leading to a significant improvement in performance over conventional 

methods; in 2D, improvements in CPU time ranged from 240% to 800%, and in 3D they ranged 

from 120% to 20%. In 2D, stored field information was reduced by a factor of 107 to 239, and in 

3D by a factor of 10211 to 17655. The Gabor method was improved beyond existing Split-Step 

Wavelet literature with a Radiation Boundary Condition method and a Gabor-domain phase screen 

method. The Gabor Radiation Boundary Conditions eliminate excess memory consumption from 

previous boundary condition schemes, and absorption is extremely strong for steep angles of 

incidence. Phase screens were moved partially or fully into the Gabor domain by approximating 

the atmospheric refractive index profile as piecewise linear and computing the propagation 

characteristics of Gabor beamlets through each component of the piecewise linear profile. 

Implementation of accurate phase screens in the Gabor domain eliminates the need for full 

transforms to and from the spatial domain without sacrificing accuracy. Multi-window Gabor 

Transforms were implemented as a straightforward modification to the Gabor propagator, enabling 

adaptive, localized Gabor Transforms to maximally sparsify propagating fields. 

The necessity for expensive rigorous solvers for accurate propagation was reduced by hybridizing 

propagator methods within a domain. A rural scenario is partitioned into an upper and lower 

region, with the upper region storing only atmosphere and the lower region encompassing the 

terrain and a small amount of atmosphere above the terrain. In 2D, a Split-Step Fourier solver is 

used to march fields in the atmosphere and a Finite Difference solver to march fields near the 

terrain; in 3D, a sparse Gabor propagator is used to march fields in the atmosphere and a Split-

Step Fourier solver subject to Impedance Boundary Conditions is used to march fields near the 

terrain. By using a fast, scalable solver to efficiently march fields in the upper atmospheric region 
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and an expensive solver to only march fields in the small lower region, the accuracy benefits of 

rigorous solvers are realized without using significant computational time to solve fields in regions 

where Split-Step Fourier already performs optimally. 

6.2 Future Work 

There are many promising avenues of further exploration for Gabor frame-based solvers. The non-

uniqueness of Gabor Transforms indicates that a field profile can have multiple Gabor-domain 

representations. Of these available representations, a scheme could be devised to arrive at the 

representation with optimum sparsity, either via a numerical search or through a modified 

transform procedure. Dictionary learning methods can also be used to optimally sparsify a Gabor 

representation. 

The Gabor-accelerated scheme for solving propagation problems also facilitates further large-scale 

studies. Uncertainty Quantification methods can be used to perform a Monte-Carlo-like 

characterization of the sensitivity of a wireless link to different environmental parameters. 

Uncertainty Quantification methods, despite requiring fewer runs of a simulation than Monte-

Carlo, still require a significant number of iterations in order to build an accurate surrogate model; 

fast Gabor frame-based propagation can reduce the time needed to perform said iterations. 

Hybrid Split-Step Fourier – Finite Difference solvers can also be further improved. Forests were 

approximated by dielectric blocks; future models could use more accurate tree parameters to 

produce more realistic scattering profiles from forests and individual trees. The hybrid method is 

compatible with any other rigorous solution methods, including other methods for accelerating the 

convergence of the Finite Difference Helmholtz equation solution, as well as Finite Element or 

Integral Equation techniques.
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